Combination and processing keratin with lignin as biocomposite materials for additive manufacturing technology.

Warren J Grigsby,Sonya M Scott, Matthew I Plowman-Holmes, Paul G Middlewood,Kimberly Recabar

Acta Biomaterialia(2020)

引用 37|浏览4
暂无评分
摘要
Additive manufacturing using Nature's resources is a desirable goal. In this work we examine how the inherent macromolecular properties of keratin and lignin can be utilised and developed using green chemistry principles to form 4D functional materials. A new methodology utilising protein complexation by lignin was applied to form copolymers and reinforce keratin cross-linking networks on aqueous and solid state processing. Solubility, chemical and processing characteristics found a favoured 4:1 ratio of keratin to lignin was most desired for effective further processing as 3D printed paste forms. Thermally processing keratin-lignin with plasticisers and processing aids demonstrated extruded FDM filaments could be formed at temperatures >130°C, but degradation of keratin-lignin materials was observed. Employing paste printing strategies, keratin-lignin hydrogels could successfully print 3D skirt outlines. This was achieved with aqueous hydrogels prepared at 30–40% solids content with and without plasticizers over a defined processing timeframe. Mechanical response to moisture stimuli was successfully demonstrated for the 4:1 keratin-lignin printed material on water soaking, realising the ability of these keratin-lignin biocomposite materials to introduce a 4th dimensional response after 3D printing.
更多
查看译文
关键词
Keratin,Lignin,Biomaterials,Conjugates,Biocomposites,Green 3D printing,Additive manufacturing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要