TMIC-24. COLONY STIMULATING FACTOR 1 INHIBITION DECREASES TUMOR GROWTH AND MACROPHAGE INFILTRATION, AND INCREASES NEUTROPHIL INFILTRATION IN XENOGRAFT MICE MODELS OF GLIOBLASTOMA

NEURO-ONCOLOGY(2019)

引用 0|浏览8
暂无评分
摘要
Abstract Glioblastoma (GBM) is the most common, highly aggressive and lethal primary brain tumor in adults, and has a median overall survival ranging from 12 to 15 months. Several human cancers including glioma are infiltrated with numerous immune cell types which play a critical role in tumor growth, invasion and resistance to treatment. Previous studies, including our group, have shown that resistance to anti-VEGF therapy is associated with myeloid cell infiltration and mesenchymal transition in GBM. Notably, most glioma patients have shown increase in CD68+ cells due to overproduction of colony stimulating factor 1 (CSF-1) by tumor cells, a growth factor for macrophages. Therefore, we hypothesized that CSF-1 inhibition may reduce macrophage and/or myeloid cell infiltration in glioma, thereby increasing animal survival as monotherapy or in combination with VEGF inhibitors in xenograft GBM mouse models. We tested two CSF-1R inhibitors (AZD 7507 and JNJ-28312141) alone and in combination with VEGF inhibition to prevent macrophage infiltration in xenograft GBM mouse models. CSF-1R and VEGF inhibitors reduced macrophage infiltration (F4/80 staining), tumor volume, and mesenchymal transition (YKL-40 staining), and there was a marginal survival benefit in this model. Interestingly, despite significant reduction in tumor macrophages, we observed a significant increase in neutrophil infiltration and hypoxia (HIF1α staining), particularly in the combinatorial treated. Considering these observations, we further evaluated tumor-associated neutrophil (TAN) infiltration in GBM patient tumors by fluorescence-activated cell sorting (FACS). FACS-isolated TANs were identified as CD11b+/CD15+/CD66b+ triple positive. Our results shown that the infiltrating TAN population vary from 0.5 to 5% in GBM patient tumors. Detailed characterization of TAN population and polarization in patient tumors are ongoing. Our findings revealed that CSF-1 and VEGF inhibition reduced macrophage infiltration and tumor growth, but significantly increased TAN infiltration which will likely hamper the potential therapeutic benefit of anti-CSF1-directed inhibitors.
更多
查看译文
关键词
colony stimulating factor,inhibition decreases tumor growth,glioblastoma,macrophage infiltration,xenograft mice models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要