Tracking Temporal Development of Optical Thickness of Hydrogen Alpha Spectral Radiation in a Laser Induced Plasma

ATOMS(2019)

引用 0|浏览1
暂无评分
摘要
In this paper, we consider the temporal development of the optical density of the H alpha spectral line in a hydrogen laser-induced plasma. This is achieved by using the so-called duplication method in which the spectral line is re-imaged onto itself and the ratio of the spectral line with it duplication is taken to its measurement without the duplication. We asses the temporal development of the self-absorption of the H alpha line by tracking the decay of duplication ratio from its ideal value of 2. We show that when 20% loss is considered along the duplication optical path length, the ratio is 1.8 and decays to a value of 1.25 indicating an optically thin plasma grows in optical density to an optical depth of 1.16 by 400 ns in the plasma decay for plasma initiation conditions using Nd:YAG laser radiation at 120 mJ per pulse in a 1.11 x105 Pa hydrogen/nitrogen gas mixture environment. We also go on to correct the H alpha line profiles for the self-absorption impact using two methods. We show that a method in which the optical depth is directly calculated from the duplication ratio is equivalent to standard methods of self-absorption correction when only relative corrections to spectral emissions are needed.
更多
查看译文
关键词
atomic spectroscopy,radiation transfer,hydrogen,laser-induced breakdown spectroscopy,stark broadening
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要