谷歌浏览器插件
订阅小程序
在清言上使用

Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors.

Journal of colloid and interface science(2019)

引用 54|浏览8
暂无评分
摘要
Manganese dioxide (MnO2) with high theoretical capacity (1380 F g-1), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)2@MnO2 core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH)2 nanorod core provides the scaffold for the growth of MnO2 nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO2 nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)2@MnO2/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm-2 at the current density of 2 mA cm-2 (283.45 F g-1 at 0.8 A g-1). Additionally, the assembled Cu(OH)2@MnO2/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg-1 at a power density of 750 W kg-1. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.
更多
查看译文
关键词
High-Performance Electrodes,Nanostructured Anodes,Metal-Organic Frameworks,Flexible Supercapacitors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要