Characterization of genetically complex Collaborative Cross mouse strains that model divergent locomotor activating and reinforcing properties of cocaine

Psychopharmacology(2020)

引用 24|浏览21
暂无评分
摘要
Rationale Few effective treatments exist for cocaine use disorders due to gaps in knowledge about its complex etiology. Genetically defined animal models provide a useful tool for advancing our understanding of the biological and genetic underpinnings of addiction-related behavior and evaluating potential treatments. However, many attempts at developing mouse models of behavioral disorders were based on overly simplified single gene perturbations, often leading to inconsistent and misleading results in pre-clinical pharmacology studies. A genetically complex mouse model may better reflect disease-related behaviors. Objectives Screening defined, yet genetically complex, intercrosses of the Collaborative Cross (CC) mice revealed two lines, RIX04/17 and RIX41/51, with extreme high and low behavioral responses to cocaine. We characterized these lines as well as their CC parents, CC004/TauUnc and CC041/TauUnc, to evaluate their utility as novel model systems for studying the biological and genetic mechanisms underlying behavioral responses to cocaine. Methods Behavioral responses to acute (initial locomotor sensitivity) and repeated (behavioral sensitization, conditioned place preference, intravenous self-administration) exposures to cocaine were assessed. We also examined the monoaminergic system (striatal tissue content and in vivo fast scan cyclic voltammetry), HPA axis reactivity, and circadian rhythms as potential mechanisms for the divergent phenotypic behaviors observed in the two strains, as these systems have a previously known role in mediating addiction-related behaviors. Results RIX04/17 and 41/51 show strikingly divergent initial locomotor sensitivity to cocaine with RIX04/17 exhibiting very high and RIX41/51 almost no response. The lines also differ in the emergence of behavioral sensitization with RIX41/51 requiring more exposures to exhibit a sensitized response. Both lines show conditioned place preference for cocaine. We determined that the cocaine sensitivity phenotype in each RIX line was largely driven by the genetic influence of one CC parental strain, CC004/TauUnc and CC041/TauUnc. CC004 demonstrates active operant cocaine self-administration and CC041 is unable to acquire under the same testing conditions, a deficit which is specific to cocaine as both strains show operant response for a natural food reward. Examination of potential mechanisms driving differential responses to cocaine show strain differences in molecular and behavioral circadian rhythms. Additionally, while there is no difference in striatal dopamine tissue content or dynamics, there are selective differences in striatal norepinephrine and serotonergic tissue content. Conclusions These CC strains offer a complex polygenic model system to study underlying mechanisms of cocaine response. We propose that CC041/TauUnc and CC004/TauUnc will be useful for studying genetic and biological mechanisms underlying resistance or vulnerability to the stimulatory and reinforcing effects of cocaine.
更多
查看译文
关键词
Behavioral sensitization,Conditioned place preference,Fast scan cyclic voltammetry,HPA axis,Intravenous self-administration,Monoamine,Circadian rhythm,Wheel-running,Circadian behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要