Numerical investigation of supersonic transverse jet interaction on CPU/GPU system

Journal of the Brazilian Society of Mechanical Sciences and Engineering(2020)

Cited 3|Views6
No score
Abstract
The main purpose of this paper is to develop a double-precision parallel algorithm implemented on graphics processing units (GPUs) for quick and accurate numerical simulations of large-scale supersonic transverse jet interaction problems. The finite volume method based on structured grid is considered; the AUSM + UP upwind scheme and the explicit multistage Runge–Kutta method are used for spatial discretization and time discretization, respectively. The turbulent solution is solved by K–ω SST two-equation model. Numerical investigation is performed for a supersonic missile body. Numerical results show that performing calculations on GPU can accurately capture the complex wave structures and vortex structures in the supersonic transverse jet flowfield. For single-GPU implementation, parallel computing can achieve an acceleration ratio of 90 times or more, and four GPU parallel computing can achieve an acceleration ratio of 106–245 times. Thus, GPU parallel computing can achieve a large-scale and efficient solution to supersonic transverse jet interaction problems.
More
Translated text
Key words
Graphics processing units (GPUs),Computational fluid dynamics (CFD),Compute unified device architecture (CUDA),Transverse jet,Parallel computing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined