Gradual adaptation of facultative anaerobic pathogens to microaerobic and anaerobic conditions.

FASEB JOURNAL(2020)

引用 14|浏览9
暂无评分
摘要
Many notable human pathogens are facultative anaerobes. These pathogens exhibit redundant metabolic pathways and a whole array of regulatory systems to adapt to changing oxygen levels. However, our knowledge of facultative anaerobic pathogens is mostly based on fully aerobic or anaerobic cultures, which does not reflect real infection conditions, while the microaerobic range remains understudied. Here, we examine the behavior of pathogenic and nonpathogenic strains of two facultative anaerobes, Escherichia coli and Pseudomonas aeruginosa, during the aerobic-anaerobic transition. To do so, we introduce a new technique named AnaeroTrans, in which we allow self-consumption of oxygen by steady-state cultures and monitor the system by measuring the gas-phase oxygen concentration. We explore the different behavior of the studied species toward oxygen and examine how this behavior is associated with the targeted infection sites. As a model, we characterize the adaptation profile of the ribonucleotide reductase network, a complex oxygen-dependent enzymatic system responsible for the generation of the deoxyribonucleotides. We also explore the actions of the most important anaerobic regulators and how these regulators influence bacterial fitness. Our results allow us to classify the different elements that compose the aerobic-anaerobic transition into reproducible stages, thus showing the different adaptation mechanisms of the studied species.
更多
查看译文
关键词
biofilm,Escherichia,oxygen,Pseudomonas,ribonucleotide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要