谷歌浏览器插件
订阅小程序
在清言上使用

Brain Connectivity Markers for the Identification of Effective Contacts in Subthalamic Nucleus Deep Brain Stimulation

HUMAN BRAIN MAPPING(2020)

引用 13|浏览17
暂无评分
摘要
The clinical benefit of deep brain stimulation (DBS) for Parkinson's disease (PD) is relevant to the tracts adjacent to the stimulation site, but it remains unclear what connectivity pattern is associated with effective DBS. The aim of this study was to identify clinically effective electrode contacts on the basis of brain connectivity markers derived from diffusion tensor tractography. We reviewed 77 PD patients who underwent bilateral subthalamic nucleus DBS surgery. The patients were assigned into the training (n = 58) and validation (n = 19) groups. According to the therapeutic window size, all contacts were classified into effective and ineffective groups. The whole-brain connectivity of each contact's volume of tissue activated was estimated using tractography with preoperative diffusion tensor data. Extracted connectivity features were put into an all-relevant feature selection procedure within cross-validation loops, to identify features with significant discriminative power for contact classification. A total of 616 contacts on 154 DBS leads were discriminated, with 388 and 228 contacts being classified as effective and ineffective ones, respectively. After the feature selection, the connectivity of contacts with the thalamus, pallidum, hippocampus, primary motor area, supplementary motor area and superior frontal gyrus was identified to significantly contribute to contact classification. Based on these relevant features, the random forest model constructed from the training group achieved an accuracy of 84.9% in the validation group, to discriminate effective contacts from the ineffective. Our findings advanced the understanding of the specific brain connectivity patterns associated with clinical effective electrode contacts, which potentially guided postoperative DBS programming.
更多
查看译文
关键词
Deep Brain Stimulation,Brain Connectivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要