Differential gene expression profiling of one- and two-dimensional apogamous gametophytes of the fern Dryopteris affinis ssp. affinis

Plant Physiology and Biochemistry(2020)

引用 10|浏览23
暂无评分
摘要
Apomixis was originally defined as the replacement of sexual reproduction by an asexual process that does not involve fertilization but, in angiosperms, it is often used in the more restricted sense of asexual reproduction through seeds. In ferns, apomixis combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells of the prothallium (apogamy). The genes that control the onset of apogamy in ferns are largely unknown. In this study, we describe the gametophyte transcriptome of the apogamous fern Dryopteris affinis ssp. affinis using an RNA-Seq approach to compare the gene expression profiles of one- and two-dimensional gametophytes, the latter containing apogamic centers. After collapsing highly similar de novo transcripts, we obtained 166,191 unigenes, of which 30% could be annotated using public databases. Multiple quality metrics indicate a good quality of the de novo transcriptome with a low level of fragmentation. Our data show a total of 10,679 genes (6% of all genes) to be differentially expressed between gametophytes of filamentous (one-dimensional) and prothallial (two-dimensional) architecture. 6,110 genes were up-regulated in two-dimensional relative to one-dimensional gametophytes, some of which are implicated in the regulation of meristem growth, auxin signaling, reproduction, and sucrose metabolism. 4,570 genes were down-regulated in two-dimensional versus one-dimensional gametophytes, which are enriched in stimulus and defense genes, as well as genes involved in epigenetic gene regulation and ubiquitin degradation. Our results provide insights into free-living gametophyte development, focusing on the filamentous-to-prothallus growth transition, and provide a useful resource for further investigations of asexual reproduction.
更多
查看译文
关键词
Apogamy,Asexual reproduction,Differential gene expression,Ferns,Gametophyte,de novo transcriptome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要