谷歌浏览器插件
订阅小程序
在清言上使用

Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABA A receptors.

European Journal of Pharmacology(2020)

引用 13|浏览19
暂无评分
摘要
Hops (Humulus lupulus L.), a major component of beer, contain potentially neuroactive compounds that made it useful in traditional medicine as a sleeping aid. The present study aims to investigate the individual components in hops acting as allosteric modulators in GABAA receptors and bring further insight into the mode of action behind the sedative properties of hops. GABA-potentiating effects were measured using [3H]ethynylbicycloorthobenzoate (EBOB) radioligand binding assay in native GABAA receptors. Flumazenil sensitivity of GABA-potentiating effects, [3H]Ro 15–4513, and [3H]flunitrazepam binding assays were used to examine the binding to the classical benzodiazepines site. Humulone (alpha acid) and 6-prenylnaringenin (prenylflavonoid) were the most potent compounds displaying a modulatory activity at low micromolar concentrations. Humulone and 6-prenylnaringenin potentiated GABA-induced displacement of [3H]EBOB binding in a concentration-dependent manner where the IC50 values for this potentiation in native GABAA receptors were 3.2 μM and 3.7 μM, respectively. Flumazenil had no significant effects on humulone- or 6-prenylnaringenin-induced displacement of [3H]EBOB binding. [3H]Ro 15–4513 and [3H]flunitrazepam displacements were only minor with humulone but surprisingly prominent with 6-prenylnaringenin despite its flumazenil-insensitive modulatory activity. Thus, we applied molecular docking methods to investigate putative binding sites and poses of 6-prenylnaringenin at the GABAA receptor α1β2γ2 isoform. Radioligand binding and docking results suggest a dual mode of action by 6-prenylnaringenin on GABAA receptors where it may act as a positive allosteric modulator at α+β- binding interface as well as a null modulator at the flumazenil-sensitive α+γ2- binding interface.
更多
查看译文
关键词
GABAA receptors,Allosteric modulation,Radioligand binding,Humulus lupulus,Molecular docking,Pharmacodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要