Ultrasound-triggered delivery of paclitaxel encapsulated in an emulsion at low acoustic pressures.

JOURNAL OF MATERIALS CHEMISTRY B(2020)

引用 14|浏览10
暂无评分
摘要
We investigated the in vitro ultrasound-triggered delivery of paclitaxel, a well known anti-cancerous drug, encapsulated in an emulsion and in the presence of CT26 tumor cells. The emulsion was made of nanodroplets, whose volume comprised 95% perfluoro-octyl bromide and 5% tributyl O-acetylcitrate, in which paclitaxel was solubilized. These nanodroplets, prepared using a high-pressure microfluidizer, were stabilized by a tailor-made and recently patented biocompatible fluorinated surfactant. The delivery investigations were performed at 37 degrees C using a high intensity focused ultrasound transducer at a frequency of 1.1 MHz. The ultrasonic pulse was made of 275 sinusoidal periods and the pulse repetition frequency was 200 Hz with a duty cycle of 5%. The measured viabilities of CT26 cells showed that paclitaxel delivery was achievable for peak-to-peak pressures of 0.4 and 3.5 MPa, without having to vaporize the perfluorocarbon part of the droplet or to induce inertial cavitation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要