Reservoir-Mediated Quantum Correlations in Non-Hermitian Optical System.

PHYSICAL REVIEW LETTERS(2020)

引用 31|浏览50
暂无评分
摘要
Recent advances in non-Hermitian physical systems have led to numerous novel optical phenomena and applications. Such systems typically involve gain and loss associated with dissipative coupling to the environment, hence interesting quantum phenomena are often washed out, rendering most realizations classical. Here, in contrast, we propose to employ dissipative coupling to enable quantum correlations. In particular, two distant optical channels are judiciously designed to couple to and exchange information with a common reservoir environment, under an anti-parity-time-symmetric setting of hot but coherent atoms. We realize a non-Hermitian nonlinear phase sensitive parametric process, where atomic motion leads to quantum correlations between two distant light beams in the symmetry-unbroken phase. This Letter starts a new route to exploring the non-Hermitian quantum phenomena by bridging the fields of atomic physics, non-Hermitian optics, quantum information, and reservoir engineering. Potential applications include novel quantum light sources, quantum information processing and sensing, and generalization to correlated many-body systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要