A hybrid fluidized-bed reactor (HFBR) based on arrayed ceramic membranes (ACMs) coupled with powdered activated carbon (PAC) for efficient catalytic ozonation: A comprehensive study on a pilot scale.

Water Research(2020)

引用 27|浏览57
暂无评分
摘要
Taking advantage of the high mass transfer in the bulk solution of fluidized-bed reactor (FBR), and the benefits of simultaneous particle separation and ozone catalysis on ceramic membranes, we proposed a hybrid fluidized-bed reactor (HFBR) based on arrayed ceramic membranes (ACMs) coupled with powdered activated carbon (PAC) for efficient catalytic ozonation. The optimum HFBR performance on a pilot scale was found at PAC addition of 3 g/L, ozone dosage of 25 mg/L, hydraulic retention time of 60 min and auxiliary aeration strength of 5 m3/h. During the 30-day treatment of coal-gasification secondary effluent (200 L/h), the HFBR system revealed not only a 117% increase in ozone utilization efficiency (ΔCOD/ΔO3) upon pure ozonation but also a highly purified effluent with better sterilization and low residual bromate (∼11 μg/L). Low-molecular-weight organic fragments and acids, as well as phthalate esters were identified as the main products in this process. By density functional theory (DFT) calculations, it was found the main functional groups (carbonyls, –C=O) on the PAC could be protected from direct ozonation in the presence of ozone-degradable organics (e.g. phenolic and aliphatic compounds) in the wastewater through an ozone-competing reaction, which prevented the rapid inactivation of the PAC in catalytic ozonation. A longer service life and cheaper materials for ceramic membranes would benefit low operation costs for the HFBR. Moreover, the addition of PAC could greatly reduce ozone demand by ∼60% in the HFBR, and therefore decrease energy consumption by ∼30%. Hence, the HFBR was proved to be a highly competitive technology for wide application in the near future.
更多
查看译文
关键词
Catalytic ozonation,Ceramic membrane,Powdered activated carbon,Advanced oxidation process,Secondary effluent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要