Integrating products of quadratic forms

arxiv(2020)

引用 0|浏览0
暂无评分
摘要
We prove that if $q_1, \ldots, q_m: {\Bbb R}^n \longrightarrow {\Bbb R}$ are quadratic forms in variables $x_1, \ldots, x_n$ such that each $q_k$ depends on at most $r$ variables and each $q_k$ has common variables with at most $r$ other forms, then the average value of the product $\left(1+ q_1\right) \cdots \left(1+q_m\right)$ with respect to the standard Gaussian measure in ${\Bbb R}^n$ can be approximated within relative error $\epsilon >0$ in quasi-polynomial $n^{O(1)} m^{O(\ln m -\ln \epsilon)}$ time, provided $|q_k(x)| \leq \gamma \|x\|^2 /r$ for some absolute constant $\gamma > 0$ and $k=1, \ldots, m$. When $q_k$ are interpreted as pairwise squared distances for configurations of points in Euclidean space, the average can be interpreted as the partition function of systems of particles with mollified logarithmic potentials. We sketch a possible application to testing the feasibility of systems of real quadratic equations.
更多
查看译文
关键词
quadratic forms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要