hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus

Charlie Y. Huang, Carlos Gonzalez-Lopez,Céline Henry,Ivan Mijakovic,Kathleen R. Ryan

SCIENTIFIC REPORTS(2020)

引用 22|浏览13
暂无评分
摘要
Antibiotic persistence is a transient phenotypic state during which a bacterium can withstand otherwise lethal antibiotic exposure or environmental stresses. In Escherichia coli , persistence is promoted by the HipBA toxin-antitoxin system. The HipA toxin functions as a serine/threonine kinase that inhibits cell growth, while the HipB antitoxin neutralizes the toxin. E. coli HipA inactivates the glutamyl-tRNA synthetase GltX, which inhibits translation and triggers the highly conserved stringent response. Although hipBA operons are widespread in bacterial genomes, it is unknown if this mechanism is conserved in other species. Here we describe the functions of three hipBA modules in the alpha-proteobacterium Caulobacter crescentus . The HipA toxins have different effects on growth and macromolecular syntheses, and they phosphorylate distinct substrates. HipA 1 and HipA 2 contribute to antibiotic persistence during stationary phase by phosphorylating the aminoacyl-tRNA synthetases GltX and TrpS. The stringent response regulator SpoT is required for HipA-mediated antibiotic persistence, but persister cells can form in the absence of all hipBA operons or spoT , indicating that multiple pathways lead to persister cell formation in C. crescentus .
更多
查看译文
关键词
Bacterial genes,Bacterial toxins,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要