# Improved Approximate Degree Bounds for K-Distinctness.

Electron Colloquium Comput Complex（2020）

Abstract

An open problem that is widely regarded as one of the most important in quantum query complexity is to resolve the quantum query complexity of the k-distinctness function on inputs of size N. While the case of k=2 (also called Element Distinctness) is well-understood, there is a polynomial gap between the known upper and lower bounds for all constants k>2. Specifically, the best known upper bound is O (N^{(3/4)-1/(2^{k+2}-4)}) (Belovs, FOCS 2012), while the best known lower bound for k≥ 2 is Ω(N^{2/3} + N^{(3/4)-1/(2k)}) (Aaronson and Shi, J. ACM 2004; Bun, Kothari, and Thaler, STOC 2018). For any constant k ≥ 4, we improve the lower bound to Ω(N^{(3/4)-1/(4k)}). This yields, for example, the first proof that 4-distinctness is strictly harder than Element Distinctness. Our lower bound applies more generally to approximate degree. As a secondary result, we give a simple construction of an approximating polynomial of degree O(N^{3/4}) that applies whenever k ≤ polylog(N).

MoreTranslated text

Key words

Approximation Algorithms,Quantum Error Correction

AI Read Science

Must-Reading Tree

Example

Generate MRT to find the research sequence of this paper

Chat Paper

Summary is being generated by the instructions you defined