An Event-driven Neuromorphic System with Biologically Plausible Temporal Dynamics

ICCAD-IEEE ACM International Conference on Computer-Aided Design(2019)

引用 14|浏览64
暂无评分
摘要
Driven by the expanse of Internet of Things (IoT) and Cyber-Physical Systems (CPS), there is an increasing demand to process streams of temporal data on embedded devices with limited energy and power resources. Among all potential solutions, neuromorphic computing with spiking neural networks (SNN) that mimic the behavior of brain, have recently been placed at the forefront. Encoding information into sparse and distributed spike events enables low-power implementations, and the complex spatial temporal dynamics of synapses and neurons enable SNNs to detect temporal pattern. However, most existing hardware SNN implementations use simplified neuron and synapse models ignoring synapse dynamic, which is critical for temporal pattern detection and other applications that require temporal dynamics. To adopt a more realistic synapse model in neuromorphic platform its significant computation overhead must be addressed. In this work, we propose an FPGA-based SNN with biologically realistic neuron and synapse for temporal information processing. An encoding scheme to convert continuous real-valued information into sparse spike events is presented. The event-driven implementation of synapse dynamic model and its hardware design that is optimized to exploit the sparsity are also presented. Finally, we train the SNN on various temporal pattern-learning tasks and evaluate its performance and efficiency as compared to rate-based models and artificial neural networks on different embedded platforms. Experiments show that our work can achieve 10X speed up and 196X gains in energy efficiency compared with GPU.
更多
查看译文
关键词
FPGA,Spiking neural network,Neuromorphic computing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要