Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO2/SiO2 nanopowder.

Chemosphere(2020)

引用 15|浏览4
暂无评分
摘要
In this study, a simple sol-gel method was applied for preparing effectual photocatalyst of S-Bi co-doped F-TiO2/SiO2 (S-Bi-F-TiO2/SiO2) nanopowder. Optimal preparation conditions were obtained by optimizing the calcination temperature and the ratio of S and Bi. The synthesized powder was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), brunauer-emmett-teller (BET), UV-Visible diffuse-reflectance spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL) and ammonia adsorption and temperature-programmed desorption (NH3-TPD). The photocatalytic activity was evaluated by the degradation of acrylonitrile under simulated visible light irradiation. S-Bi-F-TiO2/SiO2 nanopowder possess excellent photocatalytic properties under visible light for the degradation of acrylonitrile, when the calcination temperature was 450 °C for 2 h and the ratio of S and Bi was 0.02: 0.007. The degradation efficiency of acrylonitrile reached to 81.9% within 6 min of visible light irradiation. Compared with F-TiO2/SiO2 sample, NH3-TPD and PL results revealed the higher photocatalytic activity for S-Bi-F-TiO2/SiO2, which is mainly due to the increase strength and number of surface acid site with S doping. The co-doping with S & Bi improved the separation of electron-hole pairs and enhanced the photocatalytic oxidizing species. The UV-Vis DRS showed stronger absorption in S-Bi co-doped F-TiO2/SiO2 catalyst as compared to F-TiO2/SiO2 catalyst. XPS results demonstrated the presence of various surface species viz. oxygen vacancies, Ti3+, Ti4+, O2- and OH group.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要