Direct interaction between CEP85 and STIL mediates PLk4-driven directed cell migration.

JOURNAL OF CELL SCIENCE(2020)

引用 8|浏览25
暂无评分
摘要
PLK4 has emerged as a prime target for cancer therapeutics, and its overexpression is frequently observed in various types of human cancer. Recent studies have further revealed an unexpected oncogenic activity of PLK4 in regulating cancer cell migration and invasion. However, the molecular basis behind the role of PLK4 in these processes still remains only partly understood. Our previous work has demonstrated that an intact CEP85-STIL binding interface is necessary for robust PLK4 activation and centriole duplication. Here, we show that CEP85 and STIL are also required for directional cancer cell migration. Mutational and functional analyses reveal that the interactions between CEP85, STIL and PLK4 are essential for effective directional cell motility. Mechanistically, we show that PLK4 can drive the recruitment of CEP85 and STIL to the leading edge of cells to promote protrusive activity, and that downregulation of CEP85 and STIL leads to a reduction in ARP2 (also known as ACTR2) phosphorylation and reorganization of the actin cytoskeleton, which in turn impairs cell migration. Collectively, our studies provide molecular insight into the important role of the CEP85-STIL complex in modulating PLK4-driven cancer cell migration. This article has an associated First Person interview with the first author of the paper.
更多
查看译文
关键词
Centriole,Centrosome,Cell motility,Actin,PLK4,CEP85,STIL
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要