Alleviating the pressure on memory for seismic modeling

ieee international conference on high performance computing data and analytics(2019)

引用 0|浏览72
暂无评分
摘要
Summary This paper describes two methods to improve the performance of a FDTD solver for the first order formulation of the 3D acoustic wave equation. Based on spatial and temporal cache blocking techniques, these methods enable to maximize bandwidth of the memory subsystem, while reducing data traffic in-between the memory hierarchy. On the one hand, the spatial blocking (SB) approach increases data reuse among cores within each iteration of the time integration. On the other hand, the multicore wavefront diamond temporal blocking (MWD-TB) technique further leverages the SB performance by intrinsically reusing freshly cached data solutions across iterations of the time integration. While SB achieves sixfold performance speedup against the naive implementation (without cache blocking), MWD-TB outperforms SB by up to 50\% on a two-socket 16-core Intel Haswell system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要