NeurQuRI: Neural Question Requirement Inspector for Answerability Prediction in Machine Reading Comprehension

ICLR(2020)

引用 29|浏览145
暂无评分
摘要
Real-world question answering systems often retrieve potentially relevant documents to a given question through a keyword search, followed by a machine reading comprehension (MRC) step to find the exact answer from them. In this process, it is essential to properly determine whether an answer to the question exists in a given document. This task often becomes complicated when the question involves multiple different conditions or requirements which are to be met in the answer. For example, in a question "What was the projection of sea level increases in the fourth assessment report?", the answer should properly satisfy several conditions, such as "increases" (but not decreases) and "fourth" (but not third). To address this, we propose a neural question requirement inspection model called NeurQuRI that extracts a list of conditions from the question, each of which should be satisfied by the candidate answer generated by an MRC model. To check whether each condition is met, we propose a novel, attention-based loss function. We evaluate our approach on SQuAD 2.0 dataset by integrating the proposed module with various MRC models, demonstrating the consistent performance improvements across a wide range of state-of-the-art methods.
更多
查看译文
关键词
Question Answering, Machine Reading Comprehension, Answerability Prediction, Neural Checklist
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要