谷歌浏览器插件
订阅小程序
在清言上使用

Climate and Geographic Adaptation Drive Latitudinal Clines in Biomass of a Widespread Saltmarsh Plant in Its Native and Introduced Ranges

Limnology and oceanography/˜The œl & o on cd-rom(2020)

引用 0|浏览26
暂无评分
摘要
Introduced plants provide a unique opportunity to examine how plants respond through plasticity and adaptation to changing climates. We compared plants of Spartina alterniflora from the native (United States, 27–43°N) and introduced (China, 19–40°N) ranges. In the field and greenhouse, aboveground productivity of Chinese plants was greater than that of North American plants. Aboveground biomass in the field declined with increasing latitude in the native range, a pattern that persisted in the greenhouse, indicating a genetic basis. Aboveground biomass in the field displayed hump‐shaped relationships with latitude in China, but this pattern disappeared in field and greenhouse common gardens, indicating phenotypic plasticity. Relationships in both geographic regions were explained by temperature, which is probably the underlying environmental factor affecting aboveground biomass. S. alterniflora has evolved greater biomass in China, but in the four decades since it was introduced, it has not yet evolved the genetic cline in biomass seen in its native range. By working at lower latitudes in the introduced range than have been sampled in the native range, we identified an optimum temperature in the introduced range above which aboveground productivity decreases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要