Monte Carlo Tree Search In Continuous Spaces Using Voronoi Optimistic Optimization With Regret Bounds

national conference on artificial intelligence(2020)

引用 39|浏览154
暂无评分
摘要
Many important applications, including robotics, data-center management, and process control, require planning action sequences in domains with continuous state and action spaces and discontinuous objective functions. Monte Carlo tree search (MCTS) is an effective strategy for planning in discrete action spaces. We provide a novel MCTS algorithm (VOOT) for deterministic environments with continuous action spaces, which, in turn, is based on a novel black-box function-optimization algorithm (VOO) to efficiently sample actions. The VOO algorithm uses Voronoi partitioning to guide sampling, and is particularly efficient in high-dimensional spaces. The VOOT algorithm has an instance of VOO at each node in the tree. We provide regret bounds for both algorithms and demonstrate their empirical effectiveness in several high-dimensional problems including two difficult robotics planning problems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要