谷歌浏览器插件
订阅小程序
在清言上使用

Enhanced Ride Comfort Using Nonlinear Seat Suspension with High-Static-low-dynamic Stiffness

Noise & vibration worldwide(2020)

引用 0|浏览0
暂无评分
摘要
To attenuate the low-frequency vibration transmitted to the driver, a nonlinear seat suspension with high-static-low-dynamic stiffness is designed. First, the force and stiffness characteristics are derived. The nonlinear suspension can achieve the quasi-zero stiffness at the static equilibrium position when the structural parameters are properly designed. Then, a car-seat-human coupled model which consists of a quarter car model, a seat suspension, and a 4 degree-of-freedom human model is established to predict the biodynamic response of the driver. Finally, the isolation performance of the high-static-low-dynamic stiffness seat suspension under two typical road excitations is evaluated separately based on the numerical method. The effects of stiffness ratio, damping ratio, and vehicle speed on the ride comfort are investigated. The results showed that the nonlinear seat suspension outperforms the equivalent linear counterpart and can achieve the best ride comfort when the quasi-zero stiffness condition is satisfied.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要