谷歌浏览器插件
订阅小程序
在清言上使用

Communication, Cross Talk, and Signal Integration in the Adult Hippocampal Neurogenic Niche

Neuron(2020)

引用 69|浏览31
暂无评分
摘要
Radial glia-like neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells (DGCs) and astrocytes throughout life, a process referred to as adult hippocampal neurogenesis. Adult hippocampal neurogenesis is sensitive to experiences, suggesting that it may represent an adaptive mechanism by which hippocampal circuitry is modified in response to environmental demands. Experiential information is conveyed to RGLs, progenitors, and adult-born DGCs via the neurogenic niche that is composed of diverse cell types, extracellular matrix, and afferents. Understanding how the niche performs its functions may guide strategies to maintain its health span and provide a permissive milieu for neurogenesis. Here, we first discuss representative contributions of niche cell types to regulation of neural stem cell (NSC) homeostasis and maturation of adult-born DGCs. We then consider mechanisms by which the activity of multiple niche cell types may be coordinated to communicate signals to NSCs. Finally, we speculate how NSCs integrate niche-derived signals to govern their regulation. Radial glia-like neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells (DGCs) and astrocytes throughout life, a process referred to as adult hippocampal neurogenesis. Adult hippocampal neurogenesis is sensitive to experiences, suggesting that it may represent an adaptive mechanism by which hippocampal circuitry is modified in response to environmental demands. Experiential information is conveyed to RGLs, progenitors, and adult-born DGCs via the neurogenic niche that is composed of diverse cell types, extracellular matrix, and afferents. Understanding how the niche performs its functions may guide strategies to maintain its health span and provide a permissive milieu for neurogenesis. Here, we first discuss representative contributions of niche cell types to regulation of neural stem cell (NSC) homeostasis and maturation of adult-born DGCs. We then consider mechanisms by which the activity of multiple niche cell types may be coordinated to communicate signals to NSCs. Finally, we speculate how NSCs integrate niche-derived signals to govern their regulation. Radial glia-like neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells (DGCs) and astrocytes throughout life, a process referred to as adult hippocampal neurogenesis (Bonaguidi et al., 2012Bonaguidi M.A. Song J. Ming G.L. Song H. A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus.Curr. Opin. Neurobiol. 2012; 22: 754-761Crossref PubMed Scopus (105) Google Scholar, Garcia et al., 2004Garcia A.D. Doan N.B. Imura T. Bush T.G. Sofroniew M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain.Nat. Neurosci. 2004; 7: 1233-1241Crossref PubMed Scopus (671) Google Scholar, Gonçalves et al., 2016bGonçalves J.T. Schafer S.T. Gage F.H. Adult neurogenesis in the hippocampus: from stem cells to behavior.Cell. 2016; 167: 897-914Abstract Full Text Full Text PDF PubMed Scopus (291) Google Scholar, Pilz et al., 2018Pilz G.A. Bottes S. Betizeau M. Jörg D.J. Carta S. Simons B.D. Helmchen F. Jessberger S. Live imaging of neurogenesis in the adult mouse hippocampus.Science. 2018; 359: 658-662Crossref PubMed Scopus (55) Google Scholar, Seri et al., 2001Seri B. García-Verdugo J.M. McEwen B.S. Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus.J. Neurosci. 2001; 21: 7153-7160Crossref PubMed Google Scholar). Although much less is known about adult-born astrocytes, adult-born DGCs (abDGCs) integrate into hippocampal circuitry by remodeling the network and ultimately contribute to hippocampal-dependent learning and memory and regulation of emotion (Anacker and Hen, 2017Anacker C. Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood.Nat. Rev. Neurosci. 2017; 18: 335-346Crossref PubMed Scopus (148) Google Scholar, Gonçalves et al., 2016bGonçalves J.T. Schafer S.T. Gage F.H. Adult neurogenesis in the hippocampus: from stem cells to behavior.Cell. 2016; 167: 897-914Abstract Full Text Full Text PDF PubMed Scopus (291) Google Scholar, Miller and Sahay, 2019Miller S.M. Sahay A. Functions of adult-born neurons in hippocampal memory interference and indexing.Nat. Neurosci. 2019; 22: 1565-1575Crossref PubMed Scopus (0) Google Scholar, Toni and Schinder, 2015Toni N. Schinder A.F. Maturation and functional integration of new granule cells into the adult hippocampus.Cold Spring Harb. Perspect. Biol. 2015; 8: a018903PubMed Google Scholar, Tuncdemir et al., 2019Tuncdemir S.N. Lacefield C.O. Hen R. Contributions of adult neurogenesis to dentate gyrus network activity and computations.Behav. Brain Res. 2019; 374: 112112Crossref PubMed Scopus (1) Google Scholar). Levels of adult hippocampal neurogenesis are highly sensitive to experience (Cope and Gould, 2019Cope E.C. Gould E. Adult neurogenesis, glia, and the extracellular matrix.Cell Stem Cell. 2019; 24: 690-705Abstract Full Text Full Text PDF PubMed Scopus (4) Google Scholar, Gonçalves et al., 2016bGonçalves J.T. Schafer S.T. Gage F.H. Adult neurogenesis in the hippocampus: from stem cells to behavior.Cell. 2016; 167: 897-914Abstract Full Text Full Text PDF PubMed Scopus (291) Google Scholar, Kempermann et al., 1998Kempermann G. Kuhn H.G. Gage F.H. Experience-induced neurogenesis in the senescent dentate gyrus.J. Neurosci. 1998; 18: 3206-3212Crossref PubMed Google Scholar, Mirescu and Gould, 2006Mirescu C. Gould E. Stress and adult neurogenesis.Hippocampus. 2006; 16: 233-238Crossref PubMed Scopus (449) Google Scholar, van Praag et al., 2000van Praag H. Kempermann G. Gage F.H. Neural consequences of environmental enrichment.Nat. Rev. Neurosci. 2000; 1: 191-198Crossref PubMed Google Scholar, Yun et al., 2016Yun S. Reynolds R.P. Masiulis I. Eisch A.J. Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis.Nat. Med. 2016; 22: 1239-1247Crossref PubMed Scopus (27) Google Scholar), suggesting that neurogenesis may represent an adaptive mechanism by which hippocampal circuit performance is optimized in response to demands of the environment. Experience is conveyed to RGLs, neuroblasts, and immature adult-born DGCs via signals sensed by the hippocampal neurogenic niche that is composed of diverse local cell types, including astrocytes, DGCs, inhibitory interneurons, endothelial cells, extracellular matrix (ECM), and subcortical neurons that project to the DG. Thus, the local and extended niche enables NSCs to listen and respond to changes in neural activity and systemic factors (Guo and Sahay, 2017Guo N. Sahay A. Neural circuits serve as periscopes for NSCs.Cell Stem Cell. 2017; 21: 557-559Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). Understanding how the niche performs its functions may guide strategies to maintain its health throughout the lifespan and provide a permissive milieu for adult hippocampal neurogenesis. A swath of evidence generated over several decades describes how different kinds of experiences affect neural stem cell and progenitor proliferation and differentiation and survival of adult-born DGCs (Cope and Gould, 2019Cope E.C. Gould E. Adult neurogenesis, glia, and the extracellular matrix.Cell Stem Cell. 2019; 24: 690-705Abstract Full Text Full Text PDF PubMed Scopus (4) Google Scholar, Dranovsky et al., 2011Dranovsky A. Picchini A.M. Moadel T. Sisti A.C. Yamada A. Kimura S. Leonardo E.D. Hen R. Experience dictates stem cell fate in the adult hippocampus.Neuron. 2011; 70: 908-923Abstract Full Text Full Text PDF PubMed Scopus (118) Google Scholar, Encinas et al., 2008Encinas J.M. Vazquez M.E. Switzer R.C. Chamberland D.W. Nick H. Levine H.G. Scarpa P.J. Enikolopov G. Steindler D.A. Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation.Exp. Neurol. 2008; 210: 274-279Crossref PubMed Scopus (0) Google Scholar, Gonçalves et al., 2016bGonçalves J.T. Schafer S.T. Gage F.H. Adult neurogenesis in the hippocampus: from stem cells to behavior.Cell. 2016; 167: 897-914Abstract Full Text Full Text PDF PubMed Scopus (291) Google Scholar, Song et al., 2016Song J. Olsen R.H. Sun J. Ming G.L. Song H. Neuronal circuitry mechanisms regulating adult mammalian neurogenesis.Cold Spring Harb. Perspect. Biol. 2016; 8: a018937Crossref PubMed Scopus (18) Google Scholar). However, much less is understood about how different cell types within the local and extended niche communicate to NSCs and adult-born DGCs to mediate the effects of experience on adult hippocampal neurogenesis. Experience modulates NSCs by governing quiescence (state of reversible growth arrest) or activation decisions and symmetric/asymmetric self- renewal. These fundamental decisions made by the NSC are essential for homeostasis: maintenance of reservoir of NSCs ready for mobilization in response to experiential demands. Not surprisingly, NSCs do not act autonomously but instead sense and integrate a plethora of niche-derived signals communicated by local, distal, and systemic actors. Transplantation studies exemplify the role of niche in instructing and respecifying fate of biased progenitors (Gage et al., 1995Gage F.H. Coates P.W. Palmer T.D. Kuhn H.G. Fisher L.J. Suhonen J.O. Peterson D.A. Suhr S.T. Ray J. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain.Proc. Natl. Acad. Sci. USA. 1995; 92: 11879-11883Crossref PubMed Scopus (850) Google Scholar, Seidenfaden et al., 2006Seidenfaden R. Desoeuvre A. Bosio A. Virard I. Cremer H. Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain.Mol. Cell. Neurosci. 2006; 32: 187-198Crossref PubMed Scopus (100) Google Scholar). Additionally, many of these local niche cell types also govern the maturation and synaptic integration of adult-born DGCs. Here, we first discuss representative contributions of distinct niche cell types to regulation of NSC homeostasis and maturation of adult-born DGCs, with each section conveying outstanding questions. We then consider mechanisms by which the activity of multiple niche cell types may be coordinated to communicate signals to NSCs. Finally, we speculate how NSCs integrate these multiple niche-derived signals to make decisions. Ultrastructural analysis and high-resolution imaging provide a ground truth for understanding how NSCs and immature adult-born DGCs may respond to local niche signals. The subgranular zone of the DG, where neural stem cells differentiate into DGCs, is highly vascularized (Palmer et al., 2000Palmer T.D. Willhoite A.R. Gage F.H. Vascular niche for adult hippocampal neurogenesis.J. Comp. Neurol. 2000; 425: 479-494Crossref PubMed Scopus (1465) Google Scholar). Electron microscopy (EM) analysis has revealed that RGL cell bodies have concave edges presumably reflecting the convex curvature of adjacent DGC bodies. The primary (apical) processes of RGLs navigate the granule cell layer to branch extensively in the inner molecular layer (Moss et al., 2016Moss J. Gebara E. Bushong E.A. Sánchez-Pascual I. O’Laoi R. El M’Ghari I. Kocher-Braissant J. Ellisman M.H. Toni N. Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature.Proc. Natl. Acad. Sci. USA. 2016; 113: E2536-E2545Crossref PubMed Google Scholar). Secondary and tertiary processes contact DGC dendritic spines and apposing axon terminals of entorhinal cortical and subcortical projections and mossy cells. RGL processes do not establish synaptic contacts but, much like astrocytes, wrap around or form tight appositions with axon terminals and spines (Moss et al., 2016Moss J. Gebara E. Bushong E.A. Sánchez-Pascual I. O’Laoi R. El M’Ghari I. Kocher-Braissant J. Ellisman M.H. Toni N. Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature.Proc. Natl. Acad. Sci. USA. 2016; 113: E2536-E2545Crossref PubMed Google Scholar). Larger diameter processes, like astrocytic endfeet, wrap local blood vessels, creating a blanket of coverage along with astrocytic processes. Basal processes project along the subgranular zone axis and into the hilus, where they are positioned to sense signals from hilar neurons (Moss et al., 2016Moss J. Gebara E. Bushong E.A. Sánchez-Pascual I. O’Laoi R. El M’Ghari I. Kocher-Braissant J. Ellisman M.H. Toni N. Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature.Proc. Natl. Acad. Sci. USA. 2016; 113: E2536-E2545Crossref PubMed Google Scholar). EM analysis of retrovirally labeled adult-born DGCs has revealed that dendritic spines of adult-born DGCs establish contacts with perforant path boutons that have already formed synapses onto mature DGCs (Toni et al., 2007Toni N. Teng E.M. Bushong E.A. Aimone J.B. Zhao C. Consiglio A. van Praag H. Martone M.E. Ellisman M.H. Gage F.H. Synapse formation on neurons born in the adult hippocampus.Nat. Neurosci. 2007; 10: 727-734Crossref PubMed Scopus (404) Google Scholar; Figure 1). Local inhibitory interneurons form synaptic contacts with early neuroblasts, maturing adult-born dentate granule cell (abDGCs), and DGCs (Catavero et al., 2018Catavero C. Bao H. Song J. Neural mechanisms underlying GABAergic regulation of adult hippocampal neurogenesis.Cell Tissue Res. 2018; 371: 33-46Crossref PubMed Scopus (12) Google Scholar, Dieni et al., 2016Dieni C.V. Panichi R. Aimone J.B. Kuo C.T. Wadiche J.I. Overstreet-Wadiche L. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons.Nat. Commun. 2016; 7: 11313Crossref PubMed Google Scholar, Espósito et al., 2005Espósito M.S. Piatti V.C. Laplagne D.A. Morgenstern N.A. Ferrari C.C. Pitossi F.J. Schinder A.F. Neuronal differentiation in the adult hippocampus recapitulates embryonic development.J. Neurosci. 2005; 25: 10074-10086Crossref PubMed Scopus (477) Google Scholar, Freund and Buzsáki, 1996Freund T.F. Buzsáki G. Interneurons of the hippocampus.Hippocampus. 1996; 6: 347-470Crossref PubMed Google Scholar, Ge et al., 2006Ge S. Goh E.L. Sailor K.A. Kitabatake Y. Ming G.L. Song H. GABA regulates synaptic integration of newly generated neurons in the adult brain.Nature. 2006; 439: 589-593Crossref PubMed Scopus (868) Google Scholar, Heigele et al., 2016Heigele S. Sultan S. Toni N. Bischofberger J. Bidirectional GABAergic control of action potential firing in newborn hippocampal granule cells.Nat. Neurosci. 2016; 19: 263-270Crossref PubMed Scopus (24) Google Scholar, Marín-Burgin et al., 2012Marín-Burgin A. Mongiat L.A. Pardi M.B. Schinder A.F. Unique processing during a period of high excitation/inhibition balance in adult-born neurons.Science. 2012; 335: 1238-1242Crossref PubMed Scopus (213) Google Scholar, Miller and Sahay, 2019Miller S.M. Sahay A. Functions of adult-born neurons in hippocampal memory interference and indexing.Nat. Neurosci. 2019; 22: 1565-1575Crossref PubMed Scopus (0) Google Scholar, Overstreet-Wadiche et al., 2006Overstreet-Wadiche L.S. Bensen A.L. Westbrook G.L. Delayed development of adult-generated granule cells in dentate gyrus.J. Neurosci. 2006; 26: 2326-2334Crossref PubMed Scopus (132) Google Scholar, Pelkey et al., 2017Pelkey K.A. Chittajallu R. Craig M.T. Tricoire L. Wester J.C. McBain C.J. Hippocampal GABAergic inhibitory interneurons.Physiol. Rev. 2017; 97: 1619-1747Crossref PubMed Scopus (86) Google Scholar, Song et al., 2013Song J. Sun J. Moss J. Wen Z. Sun G.J. Hsu D. Zhong C. Davoudi H. Christian K.M. Toni N. et al.Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus.Nat. Neurosci. 2013; 16: 1728-1730Crossref PubMed Scopus (117) Google Scholar, Song et al., 2016Song J. Olsen R.H. Sun J. Ming G.L. Song H. Neuronal circuitry mechanisms regulating adult mammalian neurogenesis.Cold Spring Harb. Perspect. Biol. 2016; 8: a018937Crossref PubMed Scopus (18) Google Scholar). Serial section immune EM and electrophysiological recordings have demonstrated existence of astrocytic perisynaptic ensheathments of dendritic spines and mossy fiber terminals of adult-born DGCs (Krzisch et al., 2015Krzisch M. Temprana S.G. Mongiat L.A. Armida J. Schmutz V. Virtanen M.A. Kocher-Braissant J. Kraftsik R. Vutskits L. Conzelmann K.K. et al.Pre-existing astrocytes form functional perisynaptic processes on neurons generated in the adult hippocampus.Brain Struct. Funct. 2015; 220: 2027-2042Crossref PubMed Scopus (29) Google Scholar, Sultan et al., 2015Sultan S. Li L. Moss J. Petrelli F. Cassé F. Gebara E. Lopatar J. Pfrieger F.W. Bezzi P. Bischofberger J. Toni N. Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes.Neuron. 2015; 88: 957-972Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar). 2-photon imaging has shown that dendrites of immature adult-born DGCs undergo pruning both at steady state and following enriched experience (Gonçalves et al., 2016aGonçalves J.T. Bloyd C.W. Shtrahman M. Johnston S.T. Schafer S.T. Parylak S.L. Tran T. Chang T. Gage F.H. In vivo imaging of dendritic pruning in dentate granule cells.Nat. Neurosci. 2016; 19: 788-791Crossref PubMed Google Scholar). Although the maturation of dendritic spines and mossy fiber terminals of adult-born DGCs continues for several months (Faulkner et al., 2008Faulkner R.L. Jang M.H. Liu X.B. Duan X. Sailor K.A. Kim J.Y. Ge S. Jones E.G. Ming G.L. Song H. Cheng H.J. Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain.Proc. Natl. Acad. Sci. USA. 2008; 105: 14157-14162Crossref PubMed Scopus (149) Google Scholar, Gonçalves et al., 2016aGonçalves J.T. Bloyd C.W. Shtrahman M. Johnston S.T. Schafer S.T. Parylak S.L. Tran T. Chang T. Gage F.H. In vivo imaging of dendritic pruning in dentate granule cells.Nat. Neurosci. 2016; 19: 788-791Crossref PubMed Google Scholar, Lemaire et al., 2012Lemaire V. Tronel S. Montaron M.F. Fabre A. Dugast E. Abrous D.N. Long-lasting plasticity of hippocampal adult-born neurons.J. Neurosci. 2012; 32: 3101-3108Crossref PubMed Scopus (0) Google Scholar, Sun et al., 2013Sun G.J. Sailor K.A. Mahmood Q.A. Chavali N. Christian K.M. Song H. Ming G.L. Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus.J. Neurosci. 2013; 33: 11400-11411Crossref PubMed Scopus (37) Google Scholar, Toni et al., 2007Toni N. Teng E.M. Bushong E.A. Aimone J.B. Zhao C. Consiglio A. van Praag H. Martone M.E. Ellisman M.H. Gage F.H. Synapse formation on neurons born in the adult hippocampus.Nat. Neurosci. 2007; 10: 727-734Crossref PubMed Scopus (404) Google Scholar, Toni et al., 2008Toni N. Laplagne D.A. Zhao C. Lombardi G. Ribak C.E. Gage F.H. Schinder A.F. Neurons born in the adult dentate gyrus form functional synapses with target cells.Nat. Neurosci. 2008; 11: 901-907Crossref PubMed Scopus (497) Google Scholar), the tempo of maturation is modifiable by experience (Alvarez et al., 2016Alvarez D.D. Giacomini D. Yang S.M. Trinchero M.F. Temprana S.G. Büttner K.A. Beltramone N. Schinder A.F. A disynaptic feedback network activated by experience promotes the integration of new granule cells.Science. 2016; 354: 459-465Crossref PubMed Scopus (38) Google Scholar, Piatti et al., 2011Piatti V.C. Davies-Sala M.G. Espósito M.S. Mongiat L.A. Trinchero M.F. Schinder A.F. The timing for neuronal maturation in the adult hippocampus is modulated by local network activity.J. Neurosci. 2011; 31: 7715-7728Crossref PubMed Scopus (135) Google Scholar, Snyder et al., 2009Snyder J.S. Glover L.R. Sanzone K.M. Kamhi J.F. Cameron H.A. The effects of exercise and stress on the survival and maturation of adult-generated granule cells.Hippocampus. 2009; 19: 898-906Crossref PubMed Scopus (0) Google Scholar, Vivar et al., 2013Vivar C. Potter M.C. van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis.Curr. Top. Behav. Neurosci. 2013; 15: 189-210Crossref PubMed Google Scholar, Zhao et al., 2006Zhao C. Teng E.M. Summers Jr., R.G. Ming G.L. Gage F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus.J. Neurosci. 2006; 26: 3-11Crossref PubMed Scopus (824) Google Scholar), suggesting that different niche cell types relay experiential information to regulate the rate of neurogenesis. Imaging studies also identify microglia and oligodendrocytes as other local niche residents (Braun et al., 2015Braun S.M. Pilz G.A. Machado R.A. Moss J. Becher B. Toni N. Jessberger S. Programming hippocampal neural stem/progenitor cells into oligodendrocytes enhances remyelination in the adult brain after injury.Cell Rep. 2015; 11: 1679-1685Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar, Ribak et al., 2009Ribak C.E. Shapiro L.A. Perez Z.D. Spigelman I. Microglia-associated granule cell death in the normal adult dentate gyrus.Brain Struct. Funct. 2009; 214: 25-35Crossref PubMed Scopus (14) Google Scholar, Shapiro et al., 2009Shapiro L.A. Perez Z.D. Foresti M.L. Arisi G.M. Ribak C.E. Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus.Brain Res. 2009; 1266: 29-36Crossref PubMed Scopus (0) Google Scholar, Sierra et al., 2010Sierra A. Encinas J.M. Deudero J.J. Chancey J.H. Enikolopov G. Overstreet-Wadiche L.S. Tsirka S.E. Maletic-Savatic M. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis.Cell Stem Cell. 2010; 7: 483-495Abstract Full Text Full Text PDF PubMed Scopus (664) Google Scholar). The structural organization of DG neurogenic niche suggests extensive cross talk between niche cell types and positions NSCs and adult-born DGCs as integrators of diverse signals from the niche. We discuss examples of these dialogs in the next sections in the hope of shedding light on the logic underlying anatomical constraints of the niche. In each section, we begin with the relationship between niche cell type and NSCs prior to transitioning to dialog between niche cell type and adult-born DGCs. DGCs are abundant niche cells and ensconce the cell bodies of NSCs located in the subgranular zone (Figure 1). DGCs receive excitatory inputs from diverse cortical and subcortical circuits and other hippocampal subregions and, as such, are well positioned to relay signals to NSCs and immature adult-born DGCs (Miller and Sahay, 2019Miller S.M. Sahay A. Functions of adult-born neurons in hippocampal memory interference and indexing.Nat. Neurosci. 2019; 22: 1565-1575Crossref PubMed Scopus (0) Google Scholar). Growing evidence suggests that neuronal activity may recruit DGCs to modulate NSC homeostasis via secretion of factors. Several studies have identified activity-dependent production of pro-neurogenic secreted factors. A pioneering study found that electroconvulsive shock treatment induced a transient increase in GADD45b expression in DGCs (Ma et al., 2009Ma D.K. Jang M.H. Guo J.U. Kitabatake Y. Chang M.L. Pow-Anpongkul N. Flavell R.A. Lu B. Ming G.L. Song H. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis.Science. 2009; 323: 1074-1077Crossref PubMed Scopus (646) Google Scholar). Gadd45b functions as a DNA demethylase and promotes expression of secreted factors, such as brain-derived neurotrophic factor (BDNF) and fibroblast growth factor (FGF), to stimulate neural progenitor proliferation and dendritic maturation of adult-born DGCs. Neural activity and running were shown to decrease levels of sFRP3, secreted frizzled-related protein 3, an extracellular Wnt inhibitor, in DGCs (Jang et al., 2013Jang M.H. Bonaguidi M.A. Kitabatake Y. Sun J. Song J. Kang E. Jun H. Zhong C. Su Y. Guo J.U. et al.Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis.Cell Stem Cell. 2013; 12: 215-223Abstract Full Text Full Text PDF PubMed Scopus (97) Google Scholar). Reduction of sFRP3 levels promoted NSC activation without affecting lineage choice. Additionally, loss of sFRP3 also accelerated dendritic growth and spine formation, suggesting that it normally functions as a brake that calibrates the tempo of neuronal differentiation. DGCs also express other neurogenic ligands, such as vascular endothelial growth factor C (VEGF-C), which signals through VEGFR3 in NSCs to promote neurogenesis (Han et al., 2015Han J. Calvo C.F. Kang T.H. Baker K.L. Park J.H. Parras C. Levittas M. Birba U. Pibouin-Fragner L. Fragner P. et al.Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans.Cell Rep. 2015; 10: 1158-1172Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). Exercise, enriched environment, and administration of selective serotonin reuptake inhibitors have been shown to decrease bone morphogenetic protein (BMP) signaling by either reducing BMP levels or increasing expression of noggin, an extracellular BMP inhibitor, in DGCs (Brooker et al., 2017Brooker S.M. Gobeske K.T. Chen J. Peng C.Y. Kessler J.A. Hippocampal bone morphogenetic protein signaling mediates behavioral effects of antidepressant treatment.Mol. Psychiatry. 2017; 22: 910-919Crossref PubMed Scopus (14) Google Scholar, Gobeske et al., 2009Gobeske K.T. Das S. Bonaguidi M.A. Weiss C. Radulovic J. Disterhoft J.F. Kessler J.A. BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice.PLoS ONE. 2009; 4: e7506Crossref PubMed Scopus (0) Google Scholar). Viral overexpression of noggin in DGCs (Gobeske et al., 2009Gobeske K.T. Das S. Bonaguidi M.A. Weiss C. Radulovic J. Disterhoft J.F. Kessler J.A. BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice.PLoS ONE. 2009; 4: e7506Crossref PubMed Scopus (0) Google Scholar) or genetic ablation of BMP signaling in neural stem and progenitor cells (NSPCs) (when neither population is selectively targeted) promoted proliferation (Mira et al., 2010Mira H. Andreu Z. Suh H. Lie D.C. Jessberger S. Consiglio A. San Emeterio J. Hortigüela R. Marqués-Torrejón M.A. Nakashima K. et al.Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus.Cell Stem Cell. 2010; 7: 78-89Abstract Full Text Full Text PDF PubMed Scopus (261) Google Scholar). Interestingly, inducible elimination of dendritic spines of mature DGCs is accompanied by robust activation of NSCs (McAvoy et al., 2016McAvoy K.M. Scobie K.N. Berger S. Russo C. Guo N. Decharatanachart P. Vega-Ramirez H. Miake-Lye S. Whalen M. Nelson M. et al.Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits.Neuron. 2016; 91: 1356-1373Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar) and elevation in noggin expression in DGCs (K. McAvoy and A.S., unpublished data). These observations suggest that DGCs modulate NSC quiescence by regulation of BMP signaling in NSCs. Interestingly, the RNA-binding protein FXR2, which controls the stability of noggin mRNA, is expressed in mature DGCs. Loss-of-function experiments have shown that FXR2 deficiency results in increased expression of noggin and proliferation of NSCs (Guo et al., 2011Guo W. Zhang L. Christopher D.M. Teng Z.Q. Fausett S.R. Liu C. George O.L. Klingensmith J. Jin P. Zhao X. RNA-binding protein FXR2 regulates adult hippocampal neurogenesis by reducing noggin expression.Neuron. 2011; 70: 924-938Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar). In addition to these ligands, many other ligand-receptor pairs that are expressed in complementary manner in NSCs and DGCs (Dong et al., 2019Dong J. Pan Y.-B. Wu X.-R. He L.-N. Liu X.-D. Feng D.-F. Xu T.-L. Sun S. Xu N.-J. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells.Sci. Adv. 2019; 5: eaav4416Crossref PubMed Google Scholar, Engler et al., 2018Engler A. Zhang R. Taylor V. Notch and neurogenesis.Adv. Exp. Med. Biol. 2018; 1066: 223-234Crossref PubMed Scopus (4) Google Scholar, Lie et al., 2005Lie D.C. Colamarino S.A. Song H.J. Désiré L. Mira H. Consiglio A. Lein E.S. Jessberger S. Lansford H. Dearie A.R. Gage F.H. Wnt signalling regulates adult hippocampal neurogenesis.Nature. 2005; 437: 1370-1375Crossref PubMed Scopus (1005) Google Scholar, Semerci et al., 2017Semerci F. Choi W.T. Bajic A. Thakkar A. Encinas J.M. Depreux F. Segil N. Groves A.K. Maletic-Savatic M. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.eLife. 2017; 6: e24660Crossref PubMed Scopus (10) Google Scholar) are also likely to mediate different kinds of experiential signals. Together, these examples illustrate how extrinsic signals induce expression of DGC-derived secreted factors to regulate NSCs and immature adult-born DGCs. However, many questions remain to be addressed regarding the mechanisms by which neural activity governs release of secreted factors from DGCs to modulate NSCs. Because most DGCs do not project into the inner molecular layer (except for semilunar granule cells [Williams et al., 2007Williams P.A. Larimer P. Gao Y. Strowbridge B.W. Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer.J. Neurosci. 2007; 27: 13756-13761Crossref PubMed Scopus (43) Google Scholar] and a few adult-born DGCs [Luna et al., 2019Luna V.M. Anacker C. Burghardt N.S. Khandaker H. Andreu V. Millette A. Leary P. Ravenelle R. Jimenez J.C. Mastrodonato A. et al.Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyr
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要