谷歌浏览器插件
订阅小程序
在清言上使用

GPM Satellite Radar Observations of Precipitation Mechanisms in Atmospheric Rivers

Monthly weather review(2020)

引用 0|浏览38
暂无评分
摘要
Despite numerous studies documenting the importance of atmospheric rivers (AR) to the global water cycle and regional precipitation, the evolution of their water vapor fluxes has been difficult to investigate given the challenges of observing and modeling precipitation processes within ARs over the ocean. This study uses satellite-based radar reflectivity profiles from the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR), combined with kinematic and thermodynamic conditions in the vicinity of the precipitation diagnosed from the Climate Forecast System Reanalysis, to evaluate the characteristics and dynamical origins of precipitation in ARs over the northeast Pacific Ocean. Transects of 192 ARs between 2014 and 2018 are examined. Both stratiform and convective precipitation were abundant in these GPM transects and the precipitation was most often generated by forced ascent in the vicinity of a cold front in frontogenetic environments. Conditioning composite vertical profiles of reflectivity and latent heating from GPM-DPR on frontogenesis near the moist-neutral low-level jet demonstrated the importance of frontally forced precipitation on atmospheric heating tendencies. A case study of a high-impact landfalling AR is analyzed using the Weather Research and Forecasting Model, which showed how the precipitation processes and subsequent latent heat release offshore strongly influenced AR evolution. Although these precipitation mechanisms are present in global-scale models, the difficulty that coarse-resolution models have in accurately representing resultant precipitation likely translates to uncertainty in forecasting heating tendencies, their feedbacks on AR evolution, and ultimately the impacts of ARs upon landfall in the western United States.
更多
查看译文
关键词
Cold fronts,Extratropical cyclones,Frontogenesis,frontolysis,Latent heating,cooling,Radars,Radar observations,Satellite observations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要