谷歌浏览器插件
订阅小程序
在清言上使用

Analysis of Source Influence on Guided Wave Excitation in Cylindrical Structures Using Spatial Fourier Transform Method.

Journal of sensors(2020)

引用 3|浏览2
暂无评分
摘要
Guided wave transducers, such as electromagnetic acoustic transducers and piezoelectric transducers, generate multimode waves at a given excitation frequency in a cylindrical structure, making it difficult to detect flaws in such structures. To accurately identify the flaws, the transducers must be well designed to suppress the nonaxisymmetric modes. Instead of using the normal mode expansion (NME) method, a spatial Fourier transform (SFT) method is proposed to analyze source influence on the guided wave excitation in a cylindrical structure. A two-dimensional SFT is performed on the spatial distribution function of the surface loading applied to the cylindrical structure. The spatial distribution function is represented in a cylindrical coordinate system. The circumferential-direction SFT is carried out from the angular coordinate to the circumferential orders of the guided wave modes. The axial-direction SFT is carried out from the axial coordinate to the wavenumbers of the guided wave modes. The results of the two-dimensional SFT represent guided wave excitation capabilities for different circumferential orders and wavenumbers. The specific surface loading conditions on the outer surface of a pipe are analyzed to predict source influence on the guided wave excitation. The results are consistent with those obtained using the NME method. Experiments corresponding to the specific surface loading conditions are carried out on a stainless steel pipe. The results confirm the effectiveness of the SFT method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要