Ultrasensitive refractive index sensor based on enhanced Vernier effect through cascaded fiber core-offset pairs.

OPTICS EXPRESS(2020)

引用 87|浏览8
暂无评分
摘要
An ultrasensitive refractive index (RI) sensor based on enhanced Vernier effect is proposed, which consists of two cascaded fiber core-offset pairs. One pair functions as a Mach-Zehnder interferometer (MZI), the other with larger core offset as a low-finesse Fabry-Perot interferometer (FPI). In traditional Vernier-effect based sensors, an interferometer insensitive to environment change is used as sensing reference. Here in the proposed sensor, interference fringes of the MZI and the FPI shift to opposite directions as ambient RI varies, and to the same direction as surrounding temperature changes. Thus, the envelope of superimposed fringe manifests enhanced Vernier effect for RI sensing while reduced Vernier effect for temperature change. As a result, an ultra-high RI sensitivity of -87261.06 nm/RIU is obtained near the RI of 1.33 with good linearity, while the temperature sensitivity is as low as 204.7 pm/ °C. The proposed structure is robust and of low cost. Furthermore, the proposed scheme of enhanced Vernier effect provides a new perspective and idea in other sensing field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要