Familiarity detection and memory consolidation in cortical assemblies.

ENEURO(2020)

引用 6|浏览7
暂无评分
摘要
Humans have a large capacity of recognition memory (Dudai, 1997), a fundamental property of higher-order brain functions such as abstraction and generalization (Vogt and Magnussen, 2007). Familiarity is the first step towards recognition memory. We have previously demonstrated using unsupervised neural network simulations that familiarity detection of complex patterns emerges in generic cortical microcircuits with bidirectional synaptic plasticity. It is therefore meaningful to conduct similar experiments on biological neuronal networks to validate these results. Studies of learning and memory in dissociated rodent neuronal cultures remain inconclusive to date. Synchronized network bursts (SNBs) that occur spontaneously and periodically have been speculated to be an intervening factor. By optogenetically stimulating cultured cortical networks with random dot movies (RDMs), we were able to reduce the occurrence of SNBs, after which an ability for familiarity detection emerged: previously seen patterns elicited higher firing rates than novel ones. Differences in firing rate were distributed over the entire network, suggesting that familiarity detection is a system level property. We also studied the change in SNB patterns following familiarity encoding. Support vector machine (SVM) classification results indicate that SNBs may be facilitating memory consolidation of the learned pattern. In addition, using a novel network connectivity probing method, we were able to trace the change in synaptic efficacy induced by familiarity encoding, providing insights on the long-term impact of having SNBs in the cultures.
更多
查看译文
关键词
consolidation,microcircuits,neuronal network,optogenetics,recognition memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要