谷歌浏览器插件
订阅小程序
在清言上使用

Mechanical Stretch Increases Kv1.5 Current Through an Interaction Between the S1–S2 Linker and N-terminus of the Channel

Journal of biological chemistry/˜The œJournal of biological chemistry(2020)

引用 3|浏览11
暂无评分
摘要
The voltage-gated potassium channel Kv1.5 plays important roles in atrial repolarization and regulation of vascular tone. In the present study, we investigated the effects of mechanical stretch on Kv1.5 channels. We induced mechanical stretch by centrifuging or culturing Kv1.5-expressing HEK 293 cells and neonatal rat ventricular myocytes in low osmolarity (LO) medium and then recorded Kv1.5 current (IKv1.5) in a normal, isotonic solution. We observed that mechanical stretch increased IKv1.5, and this increase required the intact, long, proline-rich extracellular S1-S2 linker of the Kv1.5 channel. The low osmolarity-induced IKv1.5 increase also required an intact intracellular N terminus, which contains the binding motif for endogenous Src tyrosine kinase that constitutively inhibits IKv1.5 Disrupting the Src-binding motif of Kv1.5 through N-terminal truncation or mutagenesis abolished the mechanical stretch-mediated increase in IKv1.5 Our results further showed that the extracellular S1-S2 linker of Kv1.5 communicates with the intracellular N terminus. Although the S1-S2 linker of WT Kv1.5 could be cleaved by extracellularly applied proteinase K (PK), an N-terminal truncation up to amino acid residue 209 altered the conformation of the S1-S2 linker and made it no longer susceptible to proteinase K-mediated cleavage. In summary, the findings of our study indicate that the S1-S2 linker of Kv1.5 represents a mechanosensor that regulates the activity of this channel. By targeting the S1-S2 linker, mechanical stretch may induce a change in the N-terminal conformation of Kv1.5 that relieves Src-mediated tonic channel inhibition and results in an increase in IKv1.5.
更多
查看译文
关键词
Src kinase,potassium channel,electrophysiology,ion channel,molecular biology,patch clamp,structure-function,mechanotransduction,Kv1,cell biology,voltage-gated potassium channel,mechanical stretch,Src
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要