Tio2 Superstructures With Oriented Nanospaces: A Strategy For Efficient And Selective Photocatalysis

NANOSCALE(2020)

引用 7|浏览6
暂无评分
摘要
Highly ordered superstructures of semiconductor nanocrystals contain abundant nanometer-scale pores between the crystals; however, there have been difficulties in controlling the size and orientation of these nanospaces without the use of a template or a capping reagent. This constraint has affected their development and applications in potential fields including catalysis and optoelectronics adversely. In this study, we synthesized a rod-shaped TiO2 mesocrystal (TMC) having a length of a few hundreds of micrometers and comprising regularly ordered anatase TiO2 nanocrystals that form oriented nanospaces by exposed {001} facets. Finite-difference time-domain (FDTD) calculations of electric fields and in situ fluorescence imaging with a polarization sensitive dye on a single mesocrystal were performed to reveal anisotropic adsorption and excitation of the dyes. Furthermore, the photodegradation of the dyes was found to be more facilitated in nanospaces formed by the specific facets, as compared with the dyes randomly adsorbed on the outer surfaces. Consequently, the selectivity of photocatalytic reactions based on the molecular size and redox was enhanced by introducing the concept of oriented nanospace.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要