Addendum to `Mapping electron dynamics in highly transient EUV photon-induced plasmas: a novel diagnostic approach using multi-mode microwave cavity resonance spectroscopy'

arxiv(2020)

引用 21|浏览21
暂无评分
摘要
A new approach for an in-line beam monitor for ionizing radiation was introduced in a recent publication (Beckers, J., et al. "Mapping electron dynamics in highly transient EUV photon-induced plasmas: a novel diagnostic approach using multi-mode microwave cavity resonance spectroscopy." Journal of Physics D: Applied Physics 52.3 (2018): 034004.). Due to the recent detection and investigation of an additional third decay regime of the afterglow of an extreme ultraviolet photon-induced plasma described in a later article (Platier, B., et al. "Transition from ambipolar to free diffusion in an EUV-induced argon plasma." Applied Physics Letters 116.10 (2020).) there is an additional reason for a minimum number of photons for this approach to work. Near or below this threshold, we explain that the response time of the diagnostic method is a limiting factor. Further, a second limit for the number of photons within a pulse is formalized related to the trapping of highly energetic free electrons.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要