Automated on-chip analysis of tuberculosis drug-resistance mutation with integrated DNA ligation and amplification

Analytical and Bioanalytical Chemistry(2020)

引用 7|浏览8
暂无评分
摘要
Detection of a single base mutation in Mycobacterium tuberculosis DNA can provide fast and highly specific diagnosis of antibiotic-resistant tuberculosis. Mutation-specific ligation of padlock probes (PLPs) on the target followed by rolling circle amplification (RCA) is highly specific, but challenging to integrate in a simple microfluidic device due to the low temperature stability of the phi29 polymerase and the interference of phi29 with the PLP annealing and ligation. Here, we utilized the higher operation temperature and temperature stability of Equiphi29 polymerase to simplify the integration of the PLP ligation and RCA steps of an RCA assay in two different strategies performed at uniform temperature. In strategy I, PLP annealing took place off-chip and the PLP ligation and RCA were performed in one pot and the two reactions were clocked by a change of the temperature. For a total assay time of about 1.5 h, we obtained a limit of detection of 2 pM. In strategy II, the DNA ligation mixture and the RCA mixture were separated into two chambers on a microfluidic disc. After on-disc PLP annealing and ligation, the disc was spun to mix reagents and initiate RCA. For a total assay time of about 2 h, we obtained a limit of detection of 5 pM. Graphical abstract
更多
查看译文
关键词
Rolling circle amplification, Equiphi29, Genotyping, Magnetic nanoparticle readout, Biodetection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要