Early Drought-Responsive Genes Are Variable and Relevant to Drought Tolerance.

G3-GENES GENOMES GENETICS(2020)

引用 10|浏览37
暂无评分
摘要
Drought stress is an important crop yield limiting factor worldwide. Plant physiological responses to drought stress are driven by changes in gene expression. While drought-responsive genes (DRGs) have been identified in maize, regulation patterns of gene expression during progressive water deficits remain to be elucidated. In this study, we generated time-series transcriptomic data from the maize inbred line B73 under well-watered and drought conditions. Comparisons between the two conditions identified 8,626 DRGs and the stages (early, middle, and late drought) at which DRGs occurred. Different functional groups of genes were regulated at the three stages. Specifically, early and middle DRGs display higher copy number variation among diverse Zea mays lines, and they exhibited stronger associations with drought tolerance as compared to late DRGs. In addition, correlation of expression between small RNAs (sRNAs) and DRGs from the same samples identified 201 negatively sRNA/DRG correlated pairs, including genes showing high levels of association with drought tolerance, such as two glutamine synthetase genes, gln2 and gln6. The characterization of dynamic gene responses to progressive drought stresses indicates important adaptive roles of early and middle DRGs, as well as roles played by sRNAs in gene expression regulation upon drought stress.
更多
查看译文
关键词
Zea mays,drought,transcriptomics,time-series,small RNA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要