ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47.

Environmental Pollution(2020)

引用 30|浏览9
暂无评分
摘要
Polybrominated diphenyl ethers (PBDEs) are a series of highly persistent organic pollutants (POPs) ubiquitously distributed in marine environments. As key primary producers, microalgae are the start of PBDEs bioaccumulations and vulnerable to their toxicities. In order to deeply investigate the toxic mechanism of PBDEs on microalgal cells, the occurrence of programmed cell death (PCD) in a model diatom Thalassiosira pseudonana and its possible mediating mechanism were studied. The results indicated: cell death of T. pseudonana happened under the stress of BDE-47, which was proved to be PCD based on the correlations with three biochemical markers (DNA fragmentation, phosphatidylserine externalization and caspase activity) and three molecular markers [Metacaspase 2 gene (TpMC2), Death-associated protein gene (DAP3) and Death-specific protein 1 gene (TpDSP1)]; Furthermore, the changes of cellular ROS levels were correlated with the PCD markers and the dead cell rates, and the cell membrane and the chloroplast were identified as the major ROS production sites. Therefore, we concluded that PCD might be an important toxic mechanism of PBDEs on microalgal cells, and that chloroplast- and cell membrane-produced ROS was an important signaling molecule to mediate the PCD activation process. Our research firstly indicated microalgal PCD could be induced by PBDEs, and increased our knowledge of the toxic mechanisms by which POPs affect microalgal cells.
更多
查看译文
关键词
BDE-47,Thalassiosira pseudonana,Toxic mechanisms,Programmed cell death,ROS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要