Direct Observation Of Ultrafast Electrons Generated By High-Intensity Laser-Matter Interaction

APPLIED PHYSICS LETTERS(2020)

引用 5|浏览77
暂无评分
摘要
High intensity ultrashort laser pulses interacting with thin solid targets are able to produce energetic protons and ions by means of extremely large accelerating fields, generated by escaping electrons. The characterization of such electrons is thus a key factor for the understanding of the accelerating potential temporal evolution. Here, we present temporally resolved measurements of the ultrafast escaping electron component. The charge, electric field, and temporal duration of the emitted ultrafast electron beams are determined using temporal diagnostics with a 100 fs temporal resolution. Experimental evidence of scaling laws for the ultrafast electron beam parameters with respect to the incident laser pulse energy is retrieved and compared with theoretical models, showing an excellent agreement. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要