Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?

Climatic Change(2020)

引用 26|浏览9
暂无评分
摘要
Climate change has likely impacted crop yield potential in major rain-fed crop-growing regions. However, the impact on the spatial pattern across regions is unclear. Here, the wheat belt of Western Australia was used as a case study to investigate the effect of historical climate change on the spatial patterns of water-limited crop yield. We used 117 years (1900–2016) of observed daily climate data on ~ 5 km × ~ 5 km grids to map and quantify the spatial-temporal changes in water-limited wheat yield simulated by the APSIM model. The climate data were split into four periods based on distinct changes in rainfall (Period 1, 1900–1934; Period 2, 1935–1974; Period 3, 1975–1999; and Period 4, 2000–2016). The results showed that the observed decreases in rainfall shifted the regional wheat yield potential towards the southwest of the wheat belt by an average of 70 km between the first and last periods. Observed increases in CO 2 counteracted this by about half of this movement. Actual wheat yields achieved by farmers have not decreased, thanks to improvements in crop genetics and management, but the simulated decrease in water-limited yields has meant that actual yields in this region are not as high as they might have been. Future climate change is likely to continue to impact on water-limited crop yield and its spatial pattern in Western Australia. Cropping systems will need to continually evolve to cope with a changing climate, and every aspect of agronomy and genetics needs to be considered. Without continuing improvements, there will likely be a decrease in wheat yield across this cropping region.
更多
查看译文
关键词
Wheat, Climate change, Water-limited yield, APSIM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要