Pseudorandom Pseudo-distributions with Near-Optimal Error for Read-Once Branching Programs

SIAM JOURNAL ON COMPUTING(2020)

引用 19|浏览29
暂无评分
摘要
Nisan [Combinatorica, 12 (1992), pp. 449-461] constructed a pseudorandom generator for length n, width n read-once branching programs (ROBPs) with error E and seed length O(log(2) n + log n . log(1/epsilon)). A major goal in complexity theory is to reduce the seed length, hopefully, to the optimal O(log n log(l/epsilon)), or to construct improved hitting sets, as these would yield stronger derandomization of BPL and RL, respectively. In contrast to a successful line of work in restricted settings, no progress has been made for general, unrestricted, ROBPs. Indeed, Nisan's construction is the best pseudorandom generator and, prior to this work, also the best hitting set for unrestricted ROBPs. In this work, we make the first improvement for the general case by constructing a hitting set with seed length (O) over tilde (log(2) n log(1/epsilon)). That is, we decouple E and n, and obtain near-optimal dependence on the former. The regime of parameters in which our construction strictly improves upon prior works, namely, log(1/epsilon) >> log n, is also motivated by the work of Saks and Zhou [J. Comput. System Set., 58 (1999), pp. 376-403], who use pseudorandom generators with error E, for length n, width w ROBPs, such that w, 1/epsilon = 2(logn)(2) in their proof for BPL subset of L-3/2. In fact, we introduce and construct a new type of primitive we call pseudorandom pseudo-distributions. Informally, this is a generalization of pseudorandom generators in which one may assign negative and unbounded weights to paths, as opposed to working with probability distributions. We show that such a primitive yields hitting sets and, for derandomization purposes, can be used to derandomize two-sided error algorithms.
更多
查看译文
关键词
once branching programs,hitting sets,derandomization,space-bounded computation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要