Mixing state of black carbon and its impact on optical properties and radiative forcing over East Asia

Atmospheric Chemistry and Physics(2020)

引用 0|浏览11
暂无评分
摘要
Abstract. BC mixing state, one of essential aerosol microphysical properties modulating its optical properties and radiative forcing, and climatic and environmental effect, has often been assumed in numerical models previously. In this study, by employing a nested version of GEOS-Chem-APM model with predicted BC mixing state, we carefully examined the effect of BC mixing state on aerosol optical properties, radiative forcing, and heating rate over East Asia (EA) and particularly in East-Central China (ECC). The modelling results show that the mass of both BC core and coating by secondary species (coated SS) are significantly high in ECC and India due to strong anthropogenic emissions but quite low in the other regions. The ratio of total mass (BC + coated SS) to the BC over ECC can be doubled compared to pure BC core mass, indicating quite large coating over the regions with high anthropogenic emissions. Absorptive aerosol optical depth (AAOD) enhances ~ 40 % over ECC once core-shell mixing, rather than external mixing, is taken into account, despite AOD only changes slightly, and the resulting absorption amplification (Aa) normally varies from 1.1 to 1.8 over ECC. Aerosol direct radiative forcing (DRF) under clear sky and all sky indicate that DRF at top of atmosphere (DRFTOA) become weaker but DRF at surface (DRFSRF) become stronger when core-shell mixing, instead of external mixing, is taken in to account in the simulation. The simulation with core-shell mixing presented that over ECC, the regional-averaged atmospheric absorption enhances 39 % while DRFTOA and DRFSRF are reported as −8.3 and −17.8 W m-2, compared to −9.4 and −16.2 W m-2 in the simulation with external mixing state. The heating rate in entire column enhances with core-shell mixing state due to absorption amplification, compared to external mixing state. The heating rate at surface over ECC increases about 43 %, i.e. increase from 0.7 K day-1 (external) to 0.9 K day-1 (core-shell) during the study period. The results in three cities (Beijing, Nanjing, Chengdu), representative of North China Plain (NCP), Yangtze River Delta (YRD), and Sichuan Basin (SCB), major anthropogenic aerosol emissions regions over EA, are also discussed in the study.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要