P-Functionalized and O-deficient TiO n /VO m nanoparticles grown on Ni foam as an electrode for supercapacitors: epitaxial grown heterojunction and visible-light-driven photoresponse.

DALTON TRANSACTIONS(2020)

引用 4|浏览2
暂无评分
摘要
P-TiOn-VOm nanowires were grown on nickel foam (NF) via a one-pot hydrothermal method and by further vapor deposition/phosphorization method. It was found that low valence states of titanium oxide and deficient-oxygen coexist in P-TiOn-VOm/NF. Furthermore, (TiO1.25)(3.07) (denoted as TiOn) and VO (denoted as VOm) possess similar structures and matched facets, and their epitaxial growth leads to the formation of TiOn/VOm heterostructure with a formation energy of -1.59 eV. P-TiOn-VOm/NF possesses good electron conductivity and electrons can be transferred from Ti to V centers, as evidenced by the DFT calculations and the XPS spectra. As a result, the specific capacity of P-TiOn-VOm/NF can reach 785 C g(-1) at 1 A g(-1) in the potential range of 0-0.55 V vs. Hg/HgO, which is much larger than those of VOm/NF, P-VOm/NF, and P-TiO2-VOm/NF. On the other hand, the TiOn/VOm heterostructure also favors the separation and transfer of photoinduced electrons and holes, and P-TiOn-VOm/NF exhibits visible-light-driven photoresponse. Under visible light illumination, the specific capacity of P-TiOn-VOm/NF is increased by 6.2% relative to that in the dark. Furthermore, the P-TiOn-VOm/NF//activated carbon (AC) asymmetric supercapacitor (ASC) shows an energy density of 37.2 W h kg(-1) at a power density of 1 kW kg(-1) and excellent cycling performance with 93.6% capacity retention after 10000 cycles at 5 A g(-1), which is comparable to and even superior to those of titanium oxides and vanadium oxides. A promising achievement has been proposed to improve the energy storage performance of P-TiOn-VOm through P-functionalization and O-deficiency in this work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要