谷歌浏览器插件
订阅小程序
在清言上使用

Mechanical Regulation of Photosynthesis in Cyanobacteria.

Nature microbiology(2020)

引用 21|浏览9
暂无评分
摘要
Photosynthetic organisms regulate their responses to many diverse stimuli in an effort to balance light harvesting with utilizable light energy for carbon fixation and growth (source–sink regulation). This balance is critical to prevent the formation of reactive oxygen species that can lead to cell death. However, investigating the molecular mechanisms that underlie the regulation of photosynthesis in cyanobacteria using ensemble-based measurements remains a challenge due to population heterogeneity. Here, to address this problem, we used long-term quantitative time-lapse fluorescence microscopy, transmission electron microscopy, mathematical modelling and genetic manipulation to visualize and analyse the growth and subcellular dynamics of individual wild-type and mutant cyanobacterial cells over multiple generations. We reveal that mechanical confinement of actively growing Synechococcus sp. PCC 7002 cells leads to the physical disassociation of phycobilisomes and energetic decoupling from the photosynthetic reaction centres. We suggest that the mechanical regulation of photosynthesis is a critical failsafe that prevents cell expansion when light and nutrients are plentiful, but when space is limiting. These results imply that cyanobacteria must convert a fraction of the available light energy into mechanical energy to overcome frictional forces in the environment, providing insight into the regulation of photosynthesis and how microorganisms navigate their physical environment. Using single-cell imaging of the cyanobacterium Synechococcus, the authors show that confinement or mechanical perturbations result in altered photosynthetic activity.
更多
查看译文
关键词
Biochemistry,Biological fluorescence,Cell growth,Cellular microbiology,Microscopy,Life Sciences,general,Microbiology,Medical Microbiology,Parasitology,Infectious Diseases,Virology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要