Subwavelength-scale nanorods implemented hexagonal pyramids structure as efficient light-extraction in Light-emitting diodes.

Scientific reports(2020)

引用 2|浏览12
暂无评分
摘要
Subwavelength-scale nanorods were implemented on the hexagonal pyramid of photochemically etched light-emitting diodes (LEDs) to improve light extraction efficiency (LEE). Sequential processes of Ag deposition and inductively coupled plasma etching successfully produce nanorods on both locally unetched flat surface and sidewall of hexagonal pyramids. The subwavelength-scale structures on flat surface offer gradually changed refractive index, and the structures on side wall of hexagonal pyramid reduce backward reflection, thereby enhancing further enhancement of the light extraction efficiency. Consequently, the nanorods implemented LED shows a remarkable enhancement in the light output power by 14% compared with that of the photochemically etched LEDs which is known to exhibit the highest light output power. Theoretical calculations using a rigorous coupled wave analysis method reveal that the subwavelength-scale nanorods are very effective in the elimination of TIR as well as backward reflections, thereby further enhancing LEE of the LEDs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要