Morphological changes in synovial mesenchymal stem cells during their adhesion to the meniscus

LABORATORY INVESTIGATION(2020)

引用 9|浏览12
暂无评分
摘要
Synovial mesenchymal stem cells (MSCs) are an attractive cell source for transplantation because of their high chondrogenic potential, especially in areas like the meniscus of the knee. A synovial MSC suspension placed onto the meniscus for 10 min promoted healing of repaired meniscal tears that generally do not heal. Here, we quantified the proportion of human synovial MSCs that adhered to a porcine abraded meniscus, clarified their morphological changes, and revealed the mechanism by which the synovial MSCs adhered to the meniscus. The numbers of adhering cells at immediately after 10, 60 min and 6, 24 h after suspension placement were calculated. The meniscus surface was examined by scanning electron microscopy, and 50 cells were randomly selected at each time period, classified, and quantified for each of the six donors. Approximately 28% of the synovial MSCs immediately adhered to the meniscus after placement and the proportion of adhered cells increased further with time. All cells maintained a round shape for 60 min, and then transformed to a mixture of round and semi-flattened cells. By 24 h, flattened cells covered the meniscus. Microspikes were observed in 36% of the floating synovial MSCs and in 76% of the cells on the meniscus shortly after placement on the meniscus, then the proportion of cells with pseudopodia increased. The bleb-dominant cell proportion significantly decreased, and the smooth-dominant cell proportion increased within 60 min. Microspikes or the bodies of synovial MSCs were trapped by meniscal fibers immediately after placement. The proportion of adhered cells increased with time, and the cell morphology changed dynamically for 24 h as the synovial MSCs adhered to the meniscus. The MSCs in the round morphological state had a heterogeneous morphology. The microspikes, and the subsequent development of pseudopodia, may play an important role in adhesion onto the meniscus.
更多
查看译文
关键词
Mesenchymal stem cells,Regeneration,Medicine/Public Health,general,Pathology,Laboratory Medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要