Comprehensive Optimization of Culture Conditions for Production of Biomass-Hydrolyzing Enzymes of Trichoderma SG2 in Submerged and Solid-State Fermentation

Applied Biochemistry and Biotechnology(2020)

引用 14|浏览12
Lignocellulose biomass contain large macromolecules especially cellulose and hemicelluloses that can be converted to fuel and chemicals using microbial biocatalysts. This study presents comprehensive optimization of production of biomass-hydrolyzing enzymes (BHE) by a high β-glucosidase-producing Trichoderma SG2 for bioconversion of lignocellulose biomass. Overall, a mixture of paper powder and switchgrass was most suited for production of BHE in submerged fermentation (SmF). BHE production was significantly different for various organic and inorganic nitrogen sources. The combination of peptone, yeast extract, and ammonium sulfate resulted in the highest activities (Units/mL) of BHE: 9.85 ± 0.55 cellulase, 38.91 ± 0.31 xylanase, 21.19 ± 1.35 β-glucosidase, and 7.63 ± 0.31 β-xylosidase. Surfactants comparably enhanced BHE production. The highest cellulase activity (4.86 ± 0.55) was at 25 °C, whereas 35 °C supported the highest activities of xylanase, β-glucosidase, and β-xylosidase. A broad initial culture pH (4–7) supported BHE production. The T opt for cellulase and xylanase was 50 °C. β-xylosidase and β-glucosidase were optimally active at 40 and 70 °C, respectively; pH 5 resulted in highest cellulase, β-glucosidase, and β-xylosidase activities; and pH 6 resulted in highest xylanase activity. Response surface methodology (RSM) was used to optimize major medium ingredients. BHE activities were several orders of magnitude higher in solid-state fermentation (SSF) than in SmF. Therefore, SSF can be deployed for one-step production of complete mixture of Trichoderma SG2 BHE for bioconversion of biomass to saccharide feedstock.
Biomass,Cellulase,Xylanase,Beta-glucosidase,Beta-xylosidase,Trichoderma SG2
AI 理解论文