ZFYVE1 negatively regulates MDA5- but not RIG-I-mediated innate antiviral response.

PLOS PATHOGENS(2020)

引用 12|浏览23
暂无评分
摘要
The retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), including RIG-I and melanoma differentiation-associated gene 5 (MDA5), sense cytoplasmic viral RNA and initiate innate antiviral responses. How RIG-I and MDA5 are differentially regulated remains enigmatic. In this study, we identified the guanylate-binding protein (GBP) and zinc-finger FYVE domain-containing protein ZFYVE1 as a negative regulator of MDA5- but not RIG-I-mediated innate antiviral responses. ZFYVE1-deficiency promoted MDA5- but not RIG-I-mediated transcription of downstream antiviral genes. Comparing to wild-type mice, Zfyve1(-/-) mice were significantly protected from lethality induced by encephalomyocarditis virus (EMCV) that is sensed by MDA5, whereas Zfyve1(-/-) and Zfyve1(+/+) mice were comparable to death induced by vesicular stomatitis virus (VSV) that is sensed by RIG-I. Mechanistically, ZFYVE1 interacted with MDA5 but not RIG-I. ZFYVE1 bound to viral RNA and decreased the ligand binding and oligomerization of MDA5. These findings suggest that ZFYVE1 acts as a specific negative regulator of MDA5-mediated innate immune responses by inhibiting its ligand binding and oligomerization. Author summary RIG-I and MDA5 are the main cytosolic sensors for invaded viral RNA. How these sensors are differentially regulated is largely unknown. In this study, we identified ZFYVE1 as a specific regulator of MDA5- but not RIG-I-mediated antiviral responses. ZFYVE1-deficiency promotes antiviral immune responses and renders the mice less susceptible to EMCV-induced death. ZFYVE1 interacts with MDA5 and viral dsRNA, and inhibits the ligand binding and oligomerization of MDA5. Our study reveals a negative regulatory mechanism for keeping MDA5 inactive in un-infected cells, which contributes to our understanding on how innate antiviral responses are delicately regulated to avoid immune damage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要