Memory B cells and tuberculosis.

Veterinary immunology and immunopathology(2020)

引用 0|浏览0
暂无评分
摘要
Immunological memory is a central feature of adaptive immunity. Memory B cells are generated upon stimulation with antigen presented by follicular dendritic cells in the peripheral lymphoid tissues. This process typically involves class-switch recombination and somatic hypermutation and it can be dependent or independent on germinal centers or T cell help. The mature B cell memory pool is generally characterized by remarkable heterogeneity of functionally and phenotypically distinct sub-populations supporting multi-layer immune plasticity. Memory B cells found in human patients infected with Mycobacterium tuberculosis include IgD+ CD27+ and IgM+ CD27+ subsets. In addition, expansion of atypical memory B cells characterized by the lack of CD27 expression and by inability to respond to antigen-induced re-activation is documented in human tuberculosis. These functionally impaired memory B cells are believed to have adverse effects on host immunity. Human and animal studies demonstrate recruitment of antigen-activated B cells to the infection sites and their presence in lung granulomas where proliferating B cells are organized into discrete clusters resembling germinal centers of secondary lymphoid organs. Cattle studies show development of IgM+, IgG+, and IgA+ memory B cells in M. bovis infection with the ability to rapidly differentiate into antibody-producing plasma cells upon antigen re-exposure. This review discusses recent advances in research on generation, re-activation, heterogeneity, and immunobiological functions of memory B cells in tuberculosis. The role of memory B cells in post-skin test recall antibody responses in bovine tuberculosis and implications for development of improved immunodiagnostics are also reviewed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要