Tumor-Intrinsic or Drug-Induced Immunogenicity Dictates the Therapeutic Success of the PD1/PDL Axis Blockade.

CELLS(2020)

引用 9|浏览19
暂无评分
摘要
Immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment providing unprecedented clinical benefits. However, many patients do not respond to ICIs as monotherapy or develop resistance. Combining ICI-based immunotherapy with chemotherapy is a promising strategy to increase response rates, but few rationale-driven chemo-immunotherapy combinations have reached the clinical arena thus far. In the present study, we show that combined anti-PDL1 and anti-PDL2 antibodies optimally synergize with cyclophosphamide but not with cisplatin, and that the magnitude and duration of the therapeutic response is dependent on the immunogenic potential of the drug and of the tumor itself. Hallmarks of successful therapeutic outcomes were the enhanced infiltration by myeloid (mainly cross-presenting dendritic cells, eosinophils, and monocytic myeloid cells) and T lymphocytes into the tumor tissue and the expansion of circulating memory pools. Overall, our results suggest that immunomodulating chemotherapy can be exploited to increase the efficacy of PD1/PDL axis inhibitors in vivo, and that the magnitude of the synergic therapeutic response is affected by tumor-intrinsic immunogenicity.
更多
查看译文
关键词
programmed death ligand,chemotherapy,mouse models,chemo-immunotherapy,immune response,myeloid infiltrate,memory subsets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要