Improved bio-electricity production in bio-electrochemical reactor for wastewater treatment using biomass carbon derived from sludge supported carbon felt anode.

The Science of the total environment(2020)

引用 32|浏览13
暂无评分
摘要
Microbial fuel cell (MFC), a promising bio-electrochemical reactor could decompose organics in wastewater by redox processes of electro-active microorganism in anode and produce bio-energy, and the total MFC performance could mainly rely on electrochemical performance anode. Here, biomass carbon derived from municipal sludge was employed as low-cost and high-performance bio-anode for enhancing bioelectricity generation and wastewater treatment in MFC simultaneously. The electrochemical tests demonstrated that the large electrochemical active surface area, strong conductivity, and good biocompatibility in sludge carbon (SC) electrode resulted in higher power density (615.2 mW m-2) and lower power loss (5.4%) than those of none carbon (NC) electrode in long term operation. After 30-cycle of continuous running, the low loss of chemical oxygen demand (COD) removal was achieved up to 5.2%, which was smaller than that of NC electrode (14.1%), indicating that the MFC with SC anode could effectively treat wastewater and keep stable redox processes in anode electrode. After the formation of biofilm, the charge transfer resistance of SC electrode (16.38 Ω) was 72.4% lower than that of NC electrode (59.35 Ω). High-throughput analysis of biofilm exhibit Proteobacteria was the dominant electro-active bacteria, and the modification of SC could slightly change the bacterial community. Therefore, resource utilization of natural wastes provided the novel concept of anode catalyst fabrication for MFC in enhancing electron transfer, power output and wastewater decomposition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要