A Novel Non-Bile Acid Fxr Agonist Edp-305 Potently Suppresses Liver Injury And Fibrosis Without Worsening Of Ductular Reaction

LIVER INTERNATIONAL(2019)

引用 41|浏览13
暂无评分
摘要
Background EDP-305 is a novel and potent farnesoid X receptor (FXR) agonist, with no/minimal cross-reactivity to TGR5 or other nuclear receptors. Herein we report therapeutic efficacy of EDP-305, in direct comparison with the first-in-class FXR agonist obeticholic acid (OCA), in mouse models of liver disease. Methods EDP-305 (10 and 30 mg/kg/day) or OCA (30mg/kg/day) was tested in mouse models of pre-established biliary fibrosis (BALBc.Mdr2-/-, n = 9-12/group) and steatohepatitis induced by methionine/choline-deficient diet (MCD, n = 7-12/group). Effects on biliary epithelium were evaluated in vivo and in primary EpCAM + hepatic progenitor cell (HPC) cultures. Results In a BALBc.Mdr2-/- model, EDP-305 reduced serum transaminases by up to 53% and decreased portal pressure, compared to untreated controls. Periportal bridging fibrosis was suppressed by EDP-305 at both doses, with up to a 39% decrease in collagen deposition in high-dose EDP-305. In MCD-fed mice, EDP-305 treatment reduced serum ALT by 62% compared to controls, and profoundly inhibited perisinusoidal 'chicken wire' fibrosis, with over 80% reduction in collagen deposition. In both models, treatment with 30mg/kg OCA reduced serum transaminases up to 30%, but did not improve fibrosis. The limited impact on fibrosis was mediated by cholestasis-independent worsening of ductular reaction by OCA in both disease models; OCA but not EDP-305 at therapeutic doses promoted ductular proliferation in healthy mice and favoured differentiation of primary HPC towards cholangiocyte lineage in vitro. Conclusions EDP-305 potently improved pre-established liver injury and hepatic fibrosis in murine biliary and metabolic models of liver disease, supporting the clinical evaluation of EDP-305 in fibrotic liver diseases including cholangiopathies and non-alcoholic steatohepatitis.
更多
查看译文
关键词
cirrhosis,ductular reaction,EDP-305,Farnesoid x receptor,hepatic progenitor cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要