Single trusted qubit is necessary and sufficient for quantum realization of extremal no-signaling correlations

NPJ QUANTUM INFORMATION(2022)

引用 4|浏览13
暂无评分
摘要
The problem of achieving security of device-independent (or semi-device-independent) cryptography (for quantum key distribution and randomness generation) against the most general no-signaling adversaries has remained open. It has been recognized that the realization of extremal no-signaling non-local boxes (or extremal no-signaling non-local assemblages) could provide a route toward devising such highly secure protocols. We first prove a general no-go result that in the Bell non-locality scenario, quantum theory does not allow us to realize any extremal no-signaling non-local box, even if scenarios of arbitrary sequential measurements are considered. On the other hand, we secondly prove a positive result showing that a one-sided device-independent scenario where a single party trusts their qubit system is already sufficient for quantum theory to realize a self-testing extremal non-local point within the set of no-signaling assemblages.
更多
查看译文
关键词
Information theory and computation,Quantum information,Qubits,Physics,general,Quantum Physics,Quantum Information Technology,Spintronics,Quantum Computing,Quantum Field Theories,String Theory,Classical and Quantum Gravitation,Relativity Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要